AQA GCSE Chemistry (Combined Science) Unit 5.3: Quantitative Chemistry Knowledge Organiser - Higher

Conservation of Mass
No atoms can be created or made during a chemical reaction, so the mass of the reactants will equal the mass of the product.

Reactions can be shown as a word or symbol equation.
magnesium + oxygen \rightarrow magnesium oxide
$\mathrm{Mg}+\mathrm{O} \rightarrow \mathrm{MgO}$
Symbol equations should also be balanced; they should have the same number of atoms on each side.

$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$

Relative Formula Mass
The relative formula mass
$\left(M_{r}\right)$ is the sum of all the
relative atomic masses $\left(A_{r}\right)$ of the atoms in the formula.

Examples:

HCl
A_{r} of $H=1$
A_{r} of $\mathrm{Cl}=35.5$
M_{r} of $\mathrm{HCI}=1+35.5=36.5$

$\mathrm{H}_{2} \mathrm{SO}_{4}$

A_{r} of $H=1$
A_{r} of $S=32$
A_{r} of $\mathrm{O}=16$
M_{r} of $\mathrm{H}_{2} \mathrm{SO}_{4}=(1 \times 2)+32+$
(16×4)
M_{r} of $\mathrm{H}_{2} \mathrm{SO}_{4}=2+32+64$
M_{r} of $\mathrm{H}_{2} \mathrm{SO}_{4}=98$

Concentration of Solutions

Concentration is the amount of a substance in a specific volume of a solution. The more substance that is dissolved, then the more concentrated the solution is.

It is possible to calculate the concentration of a solution with the following equation:
concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ mass $(\mathrm{g}) \div$ volume of solvent $\left(\mathrm{dm}^{3}\right)$

The equation can be rearranged to find the mass of the dissolved substance:
mass $(\mathrm{g})=$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$

Calculating Percentage Mass of an Element in a Compound
percentage mass of an element in a compound =

$$
A_{r} \times \frac{\text { number of atoms of that element }}{M_{r} \text { of the comnound }}
$$

Find the percentage mass of oxygen in magnesium oxide.
A_{r} of magnesium $=24 \quad A_{r}$ of oxygen $=16$
M_{r} of $\mathrm{MgO}=24+16$
$=40$
$\%$ mass $=\frac{A_{r}}{M_{r}}=\frac{16}{40}=0.4 \quad 0.4 \times 100=40 \%$
If one of the products is a gas, the mass can go down.
E.g.
sodium carbonate \rightarrow sodium oxide + carbon dioxide

When sodium carbonate is thermally decomposed, carbon dioxide gas is produced and released into the atmosphere.

The Mole
The Avogadro constant, 6.02×10^{23}, is the number of molecules of a substance that make up one mole of that substance.

Iron has an A_{r} of 56 , so 1 mole of iron has a mass of 56 g .
Oxygen $\left(\mathrm{O}_{2}\right)$ gas has an M_{r} of 32 , so 1 mole of oxygen has a mass of 32 g .
Ammonia $\left(\mathrm{NH}_{3}\right)$ has an Mr_{r} of 17, so 1 mole of ammonia has a mass of 17 g .
number of moles $=$ mass in g (of an element or compound)

$$
M_{r} \text { (of the element or compound) }
$$

Moles and Equations
Write a balanced symbol equation for the reaction in which 5.6 g of iron reacts with 10.65 g of chlorine to form iron chloride.

Work out the M_{r} of all the substances.
A_{r} of $\mathrm{Fe}=56$ and A_{r} of $\mathrm{Cl}=35.5$

Divide the mass of each substance by its M_{r} to calculate how many moles of each substance reacted or produced.
moles $\mathrm{Fe}=5.6 / 56=0.1$
moles $\mathrm{Cl}=10.65 / 35.5=0.3$
Divide by the smallest number of moles
$\mathrm{Fe}=\frac{0.1}{0.1} \quad=1$
$\mathrm{Cl}=\underline{0.3}$
$\overline{0.1}$

Write down the balanced symbol equation.
$\mathrm{Fe}+3 \mathrm{Cl}$
Chlorine exists as Cl_{2} so the whole thing must be multiplied by 2 .
$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$

Limiting Reactions
If one reactant gets used up in a reaction before the other, then the reaction will stop. The reactant that has been used up is limiting.

If you halve the amount of reactant then the amount of product will also be halved.
alsed.

