
Recursion

A recursive function is a function that calls itself.

Recursion can be used instead of iteration, but it is generally less efficient.

A recursive function must contain a general case and at least one base case.
A base case is used to determine the condition for the recursion to stop. A
recursive function must have a base case.

Without a base case the recursion will be stuck in an infinite recursion depth.

Model for recursive functions
function

 if some condition is met

 return base case statements

 else

 general case statements

 functions calls itself

Factorial is an example of an augmenting recursive function that has pending
operations that get performed on return from each recursive call

def factorial(n):

 if n == 1: # base case

 return 1

 else: # general case

 return n * factorial(n-1)

Example: Trace code where n=8

n Call

Return

1 Call 8 factorial(1) 1

2 Call 7 factorial(2) 2

3 Call 6 factorial(3) 6

4 Call 5 factorial(4) 24

5 Call 4 factorial(5) 120

6 Call 3 factorial(6) 720

7 Call 2 factorial(7) 5040

8 Call 1 factorial(8) 40320

Programming paradigms

Procedural versus object-oriented paradigm

Procedural Object oriented programming

Code is divided into functions

Focus is placed on the functions

Procedures contain a sequence of
instructions that are executed
sequentially step-by-step

Data are passed into functions
through parameters and returned.

Data and functions are separate

Code is divided into objects

Focus is placed on the data

Objects have attributes (data) and
methods (functions) that perform
operations on the data

Objects model the real world more
closely by handling data and
procedures together.

Objects can interact with one another

Object oriented code is easier to reuse

Procedural-oriented programming

Structured programming divides a computer program into sererate sub programs /
modules. This is important for large coding projects allowing decomposition of the
problem. This means the code is easier to debug and make changes and allows the
reuse of code.

Example hierarchy chart with corresponding code

Stack Frames

The Call stack is a dynamic data structure stored in RAM.

Controls how functions call each other and how functions pass parameters to each
other.

Each time a call is made to a function the following details are added to the stack
frame:

• Return addresses
• Parameters
• local variables

This is necessary so the algorithm can proceed from where the function was called
once that function has been executed. It retrieves the necessary data from the
stack before the call to the function was made.

Example stack in operation
1. main(name)
2. time=0900
3. g=greeting(name,time)
4. return g

5. greeting(name,time)
6. if time < 1200
7. hello(name)
8. return True
9. else
10. return False

11. hello(name)

12. g = “Good morning ”+name

13. return g

14. g=main(“Homer”)

15. print(g)

Stack Frame Line order of operation

Call 1: main()
Return address: line 14
Parameters: name=“Homer”
Local variables: time=0900

14 Call 1

Call 2: greeting()
Return address: line 3
Parameters: name=“Homer”, time=“0900”
Local variables: None

Call 1: main()
Return address: line 14
Parameters: name=“Homer”
Local variables: time=0900

14 Call 1

1

2

3 Call 2

Call 3: hello()
Return address: line 8
Parameters: name=“Homer”
Local variables: g=“Good morning Homer”

Call 2: greeting()
Return address: line 3
Parameters: name=“Homer”, time=“0900”
Local variables: None

Call 1: main()
Return address: line 14
Parameters: name=“Homer”
Local variables: time=0900

14 Call 1

1

2

3 Call 2

5

6

7 Call 3

Call 2: greeting()
Return address: line 3
Parameters: name=“Homer”, time=“0900”
Local variables: None

Call 1: main()
Return address: line 14
Parameters: name=“Homer”
Local variables: time=0900

14 Call 1

1

2

3 Call 2

5

6

7 Call 3

11

12

13

8

Call 1: main()
Return address: line 14
Parameters: name=“Homer”
Local variables: time=0900

14 Call 1

1

2

3 Call 2

5

6

7 Call 3

11

12

13

8

3

Stack empty 14 Call 1

1

2

3 Call 2

5

6

7 Call 3

11

12

13

8

3

4

14

15

