
Flowchart Symbols 

We can represent algorithms using flowcharts 

 

 

Start and Stop 
 
 

Process – An operation that the 
algorithm performs 
 
 
 
 

Connector – Links all the other 
symbols together 
 
 

Input and Output of data that is 
read in and written out 
 
 
 
 

Decision is the same as a selection 
(if then … else) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

IF answer is “yes” THEN 

 do something 

ELSE IF answer is “no” 

 do something else 

ENDIF 

 

Pseudocode 
 
We can represent algorithms using pseudocode 
 

 Example Python equivalent 

Variable assignment 
 

a   10 a = 10 

Constant assignment 
 

constant PI  3.142 PI = 3.142 

Input a   USERINPUT a = input() 

 

Output OUTPUT “Bye” print(“Bye”) 

 

Arithmetic Operators 
 
Add 
Multiply 
Divide 
Subtract 
Integer division 
Modulus (remainder) 
 

 

 

+         

* 

/ 

- 

a  7 DIV 2        

a  7 MOD 2      

 

 

+         

* 

/ 

- 

a= 7 // 2 

a = 7 % 2 

Relational Operators 
 
Less than 

 

 

< 

> 

 

 

< 

> 

Greater than 

Equal to 

Not equal to 

Less than or equal to 

Greater than or equal 
to 
 

= 

≠  or <> 

≤ 

≥ 

== 

!= 

<= 

>= 

Boolean Operators 
 
AND 
OR 
NOT 

 

 

AND 

OR 

NOT 

 

 

AND 

OR 

NOT 

 

Selection 
 
if  .. 
 
 
 
 
 
if .. else … 
 
 
 
 
 
 
 
 
if ... else if … else 

 

IF i > 2 THEN 

 j  10 

ENDIF 

 

IF i > 2  THEN 

 j  10 

ELSE 

 j  3 

ENDIF 

 

IF i ==2 THEN 

 j  10 

ELSE IF i==3 

THEN 

 j  3 

ELSE 

 j  1 

ENDIF 

 

if i  > 2: 

 j=10 

 

 

if i > 2: 

   j=10 

else: 

   j=3 

 

 

if i ==2: 

 j=10 

elif i==3: 

 j=3 

else: 

 j=1 

Iteration 
 
While loops 
 
 
 
 
 
 
 
 
For loops 
 
 
 
 
 
 
Repeat loops 

 

 

a ← 1  

WHILE a < 4     

  OUTPUT a     

  a ← a + 1  

ENDWHILE 

 

FOR a ← 0 TO 3     

    OUTPUT a  

ENDFOR  

a ← 1  

 

REPEAT    

 

 

while a<4: 

 print(a) 

 a=a+1 

 

 

for a in 

range(3): 

 print(a) 

  OUTPUT a     

  a ← a + 1  

UNTIL a←4 

Arrays 
 

Example Python equivalent 

Set up array a  [1,2,3,4,5] a=[1,2,3,4,5] 

Access element a[0] a[0] 

Update element a[0]  4 a[0] = 4 

Set up 2D array a  

[[1,2],[3,4]] 

a = [[1,2],[3,4]] 

Access 2D 

element 

a[0][1] a[0][1] 

Update 2D 

element 

a[0][1]  4 a[0][1] = 4 

  

Subroutines 
 
procedure 
 
 
 
Function (with 
paramerters and 
return) 

 

 

SUB hello() 

 OUTPUT “hello” 

ENDSUB 

 

SUB add(n) 

 a ← 0  

 FOR a ← 0 TO n    

  a ← a + n  

 ENDFOR 

 RETURN a 

ENDSUB 

 

 

def hello(): 

 print(“hello”) 

 

 

def add(n): 

 a=0 

 for a in 

range(n+1): 

  a=a+n 

 return a 

Built-in functions 
 
Length of array 
 
Random integer 

 
 
LEN(a) 

RANDOM_INT(0, 9) 

 
 
len(a) 
 
import random 

random.randint(0,9) 
 

  
 
 
 
 
 
 
 
 
 

Process 
Start Stop 

Input/Output 

Decision Do something 

Do something 

else 

Yes 

No 



Abstraction 
Representational abstraction 
Abstraction allows us to remove unnecessary detail from a problem leaving only 
the essential features thereby making it easier to solve. Maps are examples of 
representational abstraction. 
 
Abstract generalisation 
With abstract generalisation we identify common (general) characteristics thereby 
enabling us to group similar constructs together into a hierarchy 
 
Abstract generalisation is also the ability to see patterns so that we can recognise 
problems or parts of problems that we may have solved before. Lots of 
programming is concerned with reusing pieces of code that were originally 
developed for other solutions.  Even within a piece of code we are writing we may 
notice that quite a lot of our code is repeated.  It is our ability to notice those 
repetitions that help us write more succinct and generalisable code using 
functions perhaps.  
 
Procedural abstraction 
Abstract away the actual values used in a computational method.  In that sense 
algebra and formulas are abstractions. The following expressions have the same 
form: 
 
(1+2) x 3 

(7+9) x 2 

(5.5 + 12.3) x 18.1 

 
We can abstract them away algebraically as: 
 
(a+b) x c 

 
Functional abstraction 
• A functional abstraction maps an input to an output. The function returns a 

value given a certain input.  
• Functional abstraction is an extension of procedural abstraction.  A procedural 

abstraction might form part of a functional abstraction. 
 

def calc(a,b,c): 

    return (a+b)*c  

print(calc(1,2,3)) 

 
• In programming we abstract details using functions. We do not need to know 

how functions work to use them. The functions themselves can be a black box 
to us. The details of how the function works have been abstracted away. 

 
Data abstraction 
The details of how the data are represented are hidden. We do not need to worry 
how ASCII characters, real numbers and integers are represented. Real numbers 
can be represented using exponent and mantissa in binary, but we do not need to 
concern ourselves about this when we a writing programs. We can have more 
complex abstract data types. These include queues, stacks graphs, trees, hash 
tables, dictionaries and vectors. 

 
Problem abstraction 
Remove details of a problem until you are left with a problem that you already 
know how to solve.  This allows us to use solutions that have been applied to 
analogous problems.  For instance Euler solved the Konigsberg bridge problem (is 
it possible to cross all bridges only once) by reducing it down to a graph problem, 
that he already knew how to solve.  
 
Information hiding 
In OOP, this is where data that do not contribute to the essential characteristics of 
an object are hidden. These attributes and methods are private and not accessible 
from outside an object. Essential characteristics of the object can be accessed via 

an interface. Also we do not need to concern ourselves with local variables in 
functions.   

 
Decomposition 
Decomposition is the breaking down of a complex problem into smaller more 
manageable problems that are easier to solve.  Each component of the program 
completes a specific task. This allows algorithms to be more modular and 
therefore more intuitive.   
 
Composition 
Composition is combining the procedures together to form compound procedures 
in order to solve a greater part of the problem that each of the procedures can 
solve separately. Specifying the interface between the components is important 
otherwise they would not fit together. 
 
Automation 
• Putting models into action using algorithms 
• Putting the abstractions into algorithms and putting the algorithms into code. 
• Developing computer models that concentrate on the essence of a problem.  

The models are a simplified representation of reality where assumptions are 
made.   

• For instance, weather forecast models use mathematical models and physics 
to model the atmosphere as a fluid, which is a good way to run simulations 
and predict the weather up to a few days ahead.  

• It is not possible to model the billions of variables, so simplifications are made 
to help solve the problem. As computers get more powerful and algorithms 
improve and we have more data we get better at predicting the weather. 

 

Finite State Machines (FSMs)  
 
FSMs are a model of computation that allow us to understand how computers 
work. FSMs consist of a set number of states that allows the transition between 
states and are determined by a fixed set of inputs and have a set of outputs. 
 
Notation for FSM 
 

     
 

State  End State 

 
 
 
 

Start State  Transition 

 
Finite state diagrams are a graphical way of presenting finite state machines.  

 
 

• S1, S2 and S3 are the states 

• Each transition edge has an input value 

• S1 is the Start State 

• S2 is the Accept State) 

• For the input sequence to be valid the sequence must end on the accept state 
(S2) 

 

Example sequences 
• 0 0 0 1 1 - Valid 
• 1 0 0 1 - Valid  
• 1 0 1 0 - Invalid 
• 1 0 1 - Valid 
 
State transition tables are another way of representing FSM. 
 

Start state Input New State 

S1 0 S2 

S1 1 S3 

S2 0 S1 

S2 1 S2 

S3 0 S3 

S3 1 S2 

 
Trapping invalid input – In the following example S3 captures invalid input there is 
no what to transition to another state once S3 has been achieved. 
 

 
 
Mealy Machines 
• The FSM we have looked at so far have a valid and invalid state.  The valid 

state is the accept state 
• Mealy machines are a type of FSM that have outputs on each transition and 

have no end state 
 
Example Mealy Machine 
 

 
 
The red number is the input and the blue number is the output. 
 

Input Output 

0 1 1 1 0 1 1 0 1    1 0 0 0 1 1 0 1 1    

1 1 1 0 0 1 0 0 0    1 0 0 1 1 1 1 1 1 

1 0 1 0 0 1 1 1 0    1 0 0 1 1 0 0 0 1 

 
Corresponding state transition diagram 

Start state Input New State Output 

S0 0 S1 1 

S0 1 S2 1 

S1 0 S0 1 

S1 1 S1 0 

S2 1 S1 0 

S2 0 S0 0 
 



Maths for Regular Expressions 
 
A set is an unordered collection of values where each value occurs only once.  Values 
can be numbers, symbols of letters. The contents of a set are represented using 
curly brackets. For instance, the set 

𝐴 =  {1,  2,  3,  4,  5} 
defines all the integers between 1 and 5 inclusive, where the name of the set is 𝐴. 
 
Notation of special sets 

• 𝑁 is the infinites set of natural numbers from 0 to infinity 

• 𝑁 = {0,1,2,3,4,  … . } (infinite set has ellipses) 

• 𝑥 ∈ 𝑁  means 𝑥 is a member of the set 𝑁 

• 𝑅 is the set of real numbers 

• Empty sets are sets that contain no elements and are represented using {} or Ø 
 
Set comprehension is a short hand for writing out sets. For instance they take the 
form of: 

𝐴 = {𝑛 | 𝑛 ∈ 𝑁 ^ 𝑛 < 7} 
 
This means the set is a set of natural numbers and the values are less than 7. The ^ 
character means Boolean AND and the | character means such that. 
Therefore:  

𝐴 = {0,1,2,3,4,5,6} 
 
Examples of set comprehension 

𝐴 = { 𝑥2 | 𝑥 ∈ 𝑁 ^ 𝑥 < 4} 𝐴 = {0,1,4,9} 
 

𝐴 = {2𝑥 | 𝑥 ∈ 𝑁 ^ 𝑥 < 4} 𝐴 = {0,2,4,6} 
 

𝐴 = { 3𝑥 | 𝑥 ∈ 𝑁 ^𝑥 > 4 ^ 𝑥 < 10} 𝐴 = {15,18,21,24,27} 
 

 
Compact representation of Sets 

𝐴 =  {  1𝑛 0𝑛 |𝑛 ≥  1}  
would produce the set: 
 

𝐴 = {10,1100,111000,11110000, … . . } 
 
A finite set can be counted up by natural numbers. It has a certain number of 
elements. 
 
An infinite set has an infinite number of elements 
 
The cardinality of a finite set is the number of members in a set 
 
 A countable set can be counted off by a finite subset of the natural numbers. A 
countable set has the same number of elements as a subset of the natural numbers 
 

Index 0 1 2 3 4 

Value 2 4 5 -2 -7 

 
A countably infinite set can be counted off by the natural numbers.  
 
Real numbers are not countable and you do not know which is the next value 
because they can be infinitesimal. 
 
The Cartesian product of two sets A and B (A x B) is the set of all combinations of 
pairs of elements in A and B.  
 
e.g. 𝐴 = {2,4,6} and 𝐵 = {3,5,7}  C=A X B, 
 
𝐶 = {(2,3), (2,5), (2,7), (4,3), (4,5), (4,7), (6,3), (6,5), (6,7)} 
 
Membership 

 
A Proper subset 𝐴 contains everything in the set 𝐵, but there is at least one element 
in set 𝐵 is not contained in subset 𝐴.  A is a proper subset of B (or B is a superset of 
A) 

𝐴𝐵, 𝐵 𝐴 
 

e.g 𝐴 =  {0, 1, 2}, 𝐵 =  {0,  1,  2,  3} 
 
That is subset A will always have fewer elements than set B even if it only has one 
fewer element. In other words, All members of a subset will also be in a set. If there 
are n elements in a subset,  a proper subset consists of a most n-1 elements 
 
 
The difference between a subset and a proper subset is that subset 𝐴 contains 
everything in the set 𝐵, and that all element in set 𝐵 can be contained in subset 𝐴. 
A is a subset of B 

𝐴𝐵, 𝐵 𝐴 
 

e.g 𝐴 =  {0, 1, 2, 3}, 𝐵 =  {0,  1,  2,  3} 
 

 
 

Union 
A ∪ 𝐵 – A union B (Add together two 
sets) 
 
The Union of two sets consists of all 
elements from both sets.  Where 
values are duplicated a value appears 
only once in the new set. 
 

𝐴 = {1,2,3,4,5,6} 
𝐵 = {5,6,7,8,9,10} 

𝐶 =  𝐴 𝑈 𝐵 
𝐶 =  {1,2,3,4,5,6,7,8,9,10} 

 

 

 
Intersection 
 
𝐴 ∩ 𝐵 – A intersects B – contains the 
members that both sets have in 
common 
 
An intersection between 2 sets 
consists of elements that occur in both 
sets. 
 
If A={1,2,3,4,5,6} and B={5,6,7,8,9,10}  
The intersection between A and B is 
{5,6}  
 

 

 

 
Difference  
 
𝐴/𝐵  - Difference of set A and B 
 
The difference between the 2 sets 
consists of  elements that occur in one 
or other of the sets. 
 

 

If A={1,2,3,4,5,6} and B={5,6,7,8,9,10}  
The difference between A and B will be  
{1,2,3,4,7,8,9,10} 
 

 

Regular Expressions 
 
A regular expression is a shorthand way of representing a set. The following 
characters are applied to the preceding value: 
 

* Zero or more repetitions 

+ One or more repetitions 

? 0 or 1 

| alternative 

() Group expression 

 
Examples of regular expressions (The ellipses refer to infinite series) 

ab ab ab only 

a*b b,ab,aab,aaab, .. Any number of a followed by a single b 

(ab)* ab, abab, ababab, .. Zero or more repetitions of ab 

ab+ ab,abb,abbb,.. A single a followed by one or more b 

a*b* a,b,ab,aab,abb,.. Zero or more a followed by zero or more 
b 

a?b ab, b Zero or one a followed by one  b 

a|b a,b a or b  
 
Finite state machines can be used represent regular expressions. A regular 
language can be represented by a regular expression or FSM. A FSM recognises 
whether strings are valid for a language.  
 
e.g. The finite state machine for a+b is given as: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Backus Naur Form (BNF) 
 
A language is regular if it can be represented by a regular expression and an FSM.  
 
However, some languages cannot be expressed using regular expressions.  
 
A context-free language like Backus-Naur form (BNF) is necessary whenever an 
infinite number of elements need to be counted. 
 
All regular languages can be represented by context-free languages.  
 
Production Rules 
BNF is expressed using production rules. For instance, a bit is defined with the 
following production rule. 
 
<bit> ::= 0 | 1 

 
This means that a bit can take on the value 0 or 1. 
 

• < > is a non-terminal symbol. In this example <bit> is a non-terminal symbol 

and 0 and 1 are terminal symbols. 

• ::= states that the right-hand side is defined by the left hand side 

• | means a choice (OR) between two symbols 
 
Non-Terminal Symbols 
If there is a non-terminal symbol on the right hand side there should be another 
production rule with the non-terminal symbol on the left. 
 
This is demonstrated in the following example of three production rules where the 
non-terminal symbols <month> and <year> appear on both the left and right-hand 
side. 
 
<date> ::= <month>/<year> 

<year> ::= 2018 | 2019 | 2020 

<month> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 

 
Valid expressions include 2/2020 or 12/2019 
 
Recursion 
Recursion allows us to have one or more of a symbol.  Consider the following 
example: 
 
<integer>::=<digit>|<digit><digit>|<digit><digit><digit> 

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 |7 | 8 | 9 

 
These pair of production rules only allow us to express a maximum value for an 
integer 999.  Of course integers can have an infinite number of digits. We 
represent this using recursive BNF production rules. 
 
<integer> ::= <digit> | <digit><integer> 

 

As we know with recursive functions we need  a base case and general case. The 
base case is <digit> on its own and the general case is <digit><integer> 

 
Parse Tree 
We are going to extend our rules so that we can define real numbers and negative 
numbers. 
 
<signed> ::= <number> | +<number> |-<number> 

<number> ::= <real> | <integer> 

<real> ::= <integer> . <integer> 

<integer> ::= <digit> | <digit><integer> 

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 |7 | 8 | 9 

 

Let us check that -27.01 is a valid expression for these production rules by using a 
parse tree. 
 

 
 
Syntax diagrams 
Syntax diagrams are another way of expressing the syntax of a language. The 
symbols for the syntax diagram are: 
 

 
 
The syntax diagram for the BNF production rules that we have look at is given as: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Classification of Algorithms 
 
Comparing Algorithms 
 
• The time efficiency of algorithms refers how long an algorithm takes to run as 

a function of the size of the input. 
• More than one algorithm can be used to solve the same proble.  
• For instance to calculate the sum of a sequence of numbers we can use the 

following algorithm: 
𝑠𝑢𝑚 =  (𝑛 + 1) ∗  𝑛 / 2 

where 𝑛 is the number we wish to sum the values up to. Using this calculation the 
time remains constant regardless the value of n. In other words, regardless of how 
many numbers we wish to add up the time taken will always be same. 
 
We could use an alternative algorithm to calculate the sum of a sequence of 
numbers 
 
sum ← 0 

FOR i ← 1 to n 

 sum ← sum + i 

ENDFOR 

OUTPUT sum 

 
Using this algorithm the number of operations increases in linear time with the 
size of the input. Therefore, the time taken for the algorithm to run will grow in 
linear time as in size of the input increases.  Clearly this is more inefficient than the 
first algorithm even though it solves the same problem. 
 
Another area where algorithms differ in their efficiency is in regard to the memory 
requirements of algorithms. For instance programs that read in huge data files into 
memory can end up taking up a large space in memory.  
 
When developing algorithms it is important to consider the hardware constraints 
of the system you are developing for (eg mobile phone which has limited 
processing and space capability). If you have large memory then your algorithm 
can afford to be less space efficient.  Likewise if you have access to tremendous 
processing power algorithm (eg supercomputer) your may not need to be time 
efficient although it is still desirable to make algorithms as efficient as possible. 
 
Maths for Big-O Notation 
 
A function allows us to map a set of input values to a set output values 
 

𝑦 = 𝑓(𝑥) 
 
where x is a value from the domain and y a value from the codomain 
 

domain -> codomain 
 
A linear function takes the form 𝑦 = 𝑚𝑥 + 𝑐, where m is the gradient and c the 
intercept on the y axis. 
 
A polynomial function takes the form 𝑦 =  𝑎𝑥2  +  𝑏𝑥 + 𝑐 
 
An exponential function takes the form 𝑦 =  𝑎𝑥  
 
A logarithmic function takes the form 𝑦 =  𝑎 log𝑛 𝑥 
 
Permutations illustrate how the number of operations grows factorially when we 
add additional dimensions to some problems. 
 
 
 
 
 

How many different combinations can sequence of digits have? 

No. of digits No of combinations 

2 2 

3 6 

4 24 

5 120 

 
Big O notation gives us an idea of how long a program will run if we increase the 
size of the input.  We need to consider how many operations will need to be 
carried out for a given size of input.  This gives us the time complexity of the 
algorithm.   
 

Constant Time O(1) 
 
The time remains constant even when  
the number of input increases. E.g. 
calculating the sum of a sequence of 
numbers. 
 

𝑠𝑢𝑚 =  (𝑛 + 1) ∗  𝑛 / 2 
 
Regardless of how many numbers we 
wish to add up the time taken will 
always be same. 
 

 

 

Logarithmic Time O(log n) 
 
The time taken for the algorithm to 
run will grow slowly as in size of the 
input increases. 
 
 

 
 

Linear Time O(n) 
 
The time taken for the algorithm to 
run will grow in linear time as in size 
of the input increases. 
Eg inefficient algorithm to calculate 
the sum of a sequence of numbers 
 
sum = 0 

for i=0 to n 

 sum = sum + i 

output(sum) 

 

 

 

Polynomial Time O(n2) 
 
The time taken for the algorithm to 
run will grow proportionally to the 
square of the size of the data set. 
Normally when you have nested for 
loops this will have a polynomial time 
complexity. 
 
for i=0 to n 

 for j=0 to n 

  Do something 

 

 

 

Exponential Time O(2n) 
 
The time taken for the algorithm will 
grow as the power of the number of 
inputs, so the time taken for the 
algorithm to run will grow very quickly 
as more input data are added. 
 

 
 
The time taken for an algorithm to run will depend on the hardware (eg processor 
clock speed, RAM size), even though the number of operations will be constant for 
a fixed input. 
 
Tractable problems  are problems that have a polynomial or less time solution eg 
O(1), O(n), O(log n), O(n2) 
 
Intractable problem are problems that can be theoretically solved but take longer 
than polynomial time e.g. O(n!), O(2n) 
 
Heuristic algorithms are used to provide approximate but not exact solutions to 
intractable problems 
 
The travelling Salesman Problem 
The idea is to find the shortest route to visit all cities.  This is a permutation of the 
number of cities so has a factorial time complexity so quickly becomes an 
intractable problem with an unfeasibly huge number of permutations. 
 
To solve this we use an heuristic algorithm.  This provide an acceptable solution to 
the problem but it may not be the optimal or best solution.  So for the travelling 
salesman problem we may find a short route but not necessarily the shortest 
route.  Heuristic algorithms for the travelling salesman problem include the 
following: 
 

• Greedy algorithm – take the shortest route to the next city 

• Visit the cities in a circle 

• Brute force algorithm – Apply to small but different subsets of cities and 
combine together.  Apply the brute force algorithm to fewer manageable 
problems rather than a single intractable problem 

 
Time Complexity of common algorithms 

Linear Search O(n) 

Binary Search O(log n) 

Binary Tree Search O(log n) 

Bubble Sort O(n2) 

Merge sort O(n log n) 

Travelling Salesman Problem O(n!) 

Brute force password cracker where n is the length 
of the password 

O(An) 

 
Unsolvable problems Some problems cannot be solved by a computer.  The 
Halting problem is one such problem and show that some problems cannot be 
solved algorithmically.  
 
The halting problem states that there is no computer program that exists that can 
determine whether another computer program will halt or will continue to run 
forever given some specified input.  
 
The halting problem show that some problems cannot be solved by a computer 
 
 



Turing Machines 

 
Purpose of Turing Machines 
• Turing machines are a model of computation that help us understand how 

algorithms can be solved computationally. 
• If a problem is computable then it can be solved by a Turing machine (Church-

Turing thesis). 
• Turing machines can be used determine whether an algorithm is computable. 
 
How a Turing Machine Works 
• A Turing machine is a finite state machine with a tape of infinite length that is 

divided into squares.  This is the memory of the machine. 

• Has a finite set of symbols, commonly 0 , 1 and  which indicates no value. 
Each square on the tape takes on one of the values of the symbols. 

• Has a head which can read and write to the tape and move along the tape in 
either direction. 

• Has a finite set of states.  It can have a start state and must have a halting 
state. 

• Behave as interpreters because the deal with one instruction at a time. 
• Turing machines can be expressed using: 

• Finite State Machines / diagrams 
• State transition tables 
• State transition functions 

 
Finite state machine for even parity generator 

 

First value is the symbol read, 
Second value is the symbol to 
write and third value is the 
direction in which to move the 
head 
 

 
State transition table for even parity generator 

State Read Write Move Next state 

S0 0 0 → S0 

S0 1 1 → S1 

S0  0 → SH 

S1 0 0 → S1 

S1 1 1 → S0 

S1  1 → SH 

 
State transition function for even parity generator 
 
∂(current state, input symbol) = (next state , output symbol ,direction) 
 
∂(S0,0) = (S0,0,→) 
∂(S0,1) = (S1,1,→) 
∂(S0,) = (SH,0,→) 
∂(S1,0) = (S1,0,→) 
∂(S1,1) = (S0,1,→) 
∂(S1,) = (SH,1,→) 
 
Worked example:  
 

Tape used for 
even parity 
generator 

 
 1 0 1 1 1 0    

 

The green arrow denotes the position of the read/ write 
head 
 

 
Step 1 

 
 1 0 1 1 1 0    

 
                  S0 

 
Step 2 

 
 1 0 1 1 1 0    

 
                             S1 

 
Step 3 

 
 1 0 1 1 1 0    

 
                                        S1 

 
Step 4 

  
 1 0 1 1 1 0    

 
                                                 S0 

 
Step 5 

 
 1 0 1 1 1 0    

 
                                                           S1 

 
Step 6 

 
 1 0 1 1 1 0    

 
                                                                      S0 

 
Step 7  

 
 1 0 1 1 1 0    

 
                                                                                 S0 

 
Step 8 
 
 

 
 
 1 0 1 1 1 0 0   

 
                                                                                           SH 

 
Universal Turing Machines 
• For each operation a different Turing machine has to be created, so this is not 

ideal.   
• For a Turing machine, the state transition diagram / function / FSM are the 

instructions so is separate from the tape 
• A Universal Turing machine is a Turing machine that can execute another 

Turing machine.  The instructions of the Turing machine are stored on the 
tape. 

• This model of computing is what is used in modern computers today where 
both the program instructions and the data are stored in memory. 

 

 
 

 


