Programming - Python

Comment - Text within the code that is ignored by the computer. A Python comment is preceeded by a \#.
\# This is an example of a comment
Output - Processed information that is sent out from a computer

Python

print("Hello World!")
Hello World!
print("Hello", "World!") Hello World!
print ("Hello"+"World!")
HelloWorld!
print("Hello\nWorld!")
Hello
World!
Input - Data sent to a computer to be processed

print("Enter name")	OUTPUT "Enter name"
name=input()	name \leftarrow USERINPUT
print("Hello", name)	OUTPUT "Hello", name
print("Enter age")	OUTPUT "Enter age"
age=int(input())	age \leftarrow USERINPUT

Assignment - The allocation of data values to variables, constants, arrays and other data structures so that the values can be stored.

- Variable - Value that can change during the running of a program. By convention we use lower case to identify variables (eg $a=12$)
- Constant - Value that remains unchanged for the duration of the program. By convention we use upper case letters to identify constants. (e.g. PI=3.141)

Data Types

Integer - Whole number	age $=12$	age $\leftarrow \quad 12$
Float (real) number-A number with a decimal point	height $=1.52$	height $\leftarrow \quad 12$
Character - A single letter, symbol or number	$\mathrm{a}=$ ' a '	$\mathrm{a} \leftarrow \quad$ 'a'
String - multiple characters	name $=$ "Bart"	name $\leftarrow \quad$ "Bart"
Boolean - Has two values: true of false.	$\mathrm{a}=$ True	$\mathrm{a} \leftarrow$ True
$\mathrm{b}=$ False	$\mathrm{b} \leftarrow$ False	

Arithmetic Operators

Add	$7+2$	$=9$	$7+2$
Subtract	$7-2$	$=5$	$7-2$
Multiply	$7 * 2$	$=14$	$7 * 2$
Divide	$4 / 2$	$=2$	$4 / 2$
power	$2 * * 3$	$=8$	$2 * * 3$
Integer division	$7 / / 2$	$=3$	7 DIV 2

Modulus (remainder)
 $7 \div 2$
 = 1
 Relational Operators - Allows the Comparison of values

Less than	$<$	$<$	$7<2$	-> False
Greater than	$>$	$<$	$7>2$	-> True
Equal to	$==$	$==$	$7==2$	-> False
Not equal to	$!=$	\neq	or $<>$	$7!=2$

Boolean Operators

AND and $7<2$ and $1<2$	-> False	
OR	or $7<2$ or $1<2$	-> False
NOT	not not $7<2$	-> True

Sequencing represents a set of steps. Each line of code will have some operation and these operations will be carried out in order line-by-line

```
Using + operator for adding
\begin{tabular}{ll}
\(a=1\) & \(a \leftarrow 1\) \\
\(b=2\) & \(b \leftarrow 2\) \\
\(c=a+b\) & \(c \leftarrow a+b\) \\
print (c) -> 3 & OUTPUT c
\end{tabular}
```

Using + operator for concatenation

$\mathrm{a}=$ 'Hello,	$\mathrm{a} \leftarrow$ 'Hello
$\mathrm{b}=$ 'World'	
$\mathrm{c}=\mathrm{a}+\mathrm{b}$	$\mathrm{b} \leftarrow$ 'World'
print (c) $->$ Hello World	$\mathrm{c} \leftarrow \mathrm{a}+\mathrm{b}$
OUTPUT c	

Random number

Random integer	import random random.randint $(0,9)$	RANDOM_INT $(0,9)$
Choice	random.choice ($\left.{ }^{\prime} \mathrm{a}^{\prime}, \mathrm{\prime}^{\prime} \mathrm{b}^{\prime}, \prime^{\prime} \mathrm{c}^{\prime}\right)$	

Selection represents a decision in the code according to some condition. The condition is met then the block of code is executed otherwise it is not. Often alternative blocks of code are executed according to some condition.

$\mathrm{x}=$ RANDOM_INT ()

IF $\mathrm{x}<10$ THE
$\mathrm{y}=1$
ELSE
$\mathrm{y}=0$
ENDIF

IF ...	$\begin{aligned} & \text { IF i > } 2 \text { THEN } \\ & j \leftarrow 10 \\ & \text { ENDIF } \end{aligned}$	$\begin{aligned} & \text { if i }>2: \\ & j=10 \end{aligned}$
IF ... ELSE ...	$\begin{aligned} & \text { IF i > } 2 \text { THEN } \\ & j \leftarrow 10 \\ & \text { ELSE } \\ & j \leftarrow 3 \\ & \text { ENDIF } \end{aligned}$	```if i > 2: j=10 else: j=3```
IF ... ELSE IF ... ELSE	$\begin{aligned} & \text { IF } i==2 \text { THEN } \\ & j \leftarrow 10 \\ & \text { ELSE IF } i==3 \\ & j \leftarrow 3 \\ & \text { ELSE } \\ & j \leftarrow 1 \\ & \text { ENDIF } \end{aligned}$	$\begin{aligned} & \text { if } i==2 \text { : } \\ & j=10 \\ & \text { elif } i==3 \text { : } \\ & j=3 \\ & \text { else: } \\ & j=1 \end{aligned}$

Iteration Sometimes we wish the code to repeat a set of instructions
WHILE loops are used when the we do not know beforehand the number of erations needed and this varies according to some condition.

while True: print("Hello World")	```WHILE TRUE OUTPUT "Hello World" ENDWHILE```
$\begin{aligned} & a=0 \\ & \text { while } a<4: \\ & \text { print(a) } \\ & a=a+3 \end{aligned}$	$\begin{aligned} & a \leftarrow 0 \\ & \text { WHILE a < } 4 \\ & \text { OUTPUT a } \\ & a \leftarrow a+3 \\ & \text { ENDWHILE } \end{aligned}$

FOR loops are used when we know before hand the number of iterations we wish to make.
for a in range (3) :
print(a)

FOR a $\leftarrow 0$ TO 3
output a

Nested structures - Use constructs (e.g. WHILE, FOR, IF) inside another.

use a nested FOR loop to	
print out a grid	for i in range (10):
	for i in range (10):
	print ("x ", end="")
	print ()

Use a nested while and if	i=0
to print out only even	
numbers	while $i<51:$
	if (i\%2==0):
	print (i)
$i=i+1$	

Lists

Create a list

Access element by index pos	shapes [1] -> circle
Append item to list	shapes.append("triangle")
Remove item from list Remove item from list by index	shapes.remove ("circle")
shapes.pop(1)	

Create a 2D list	$\begin{aligned} & d=[[23,14,17],[12,18,37], \\ & [16,67,83]] \end{aligned}$
Another way to create a 2D list	$\begin{aligned} & \mathrm{a}=[23,14,17] \\ & \mathrm{b}=[12,18,37] \\ & \mathrm{c}=[16,67,83] \\ & \mathrm{d}=[\mathrm{a}, \mathrm{~b}, \mathrm{c}] \end{aligned}$
Access element by index position	d[1][2] -> 37

Strings

Get length of a string	len ("Hello")	$\operatorname{LEN}(" H e l l o ")$
Character to character code	$\operatorname{ord}(" \mathrm{a}$ ") $->97$	$\operatorname{ORD}($ "a")
Character code to character	$\operatorname{chr}(101)->$ 'e'	$\operatorname{CHR}(101)$
String to integer	$a=\operatorname{int}(" 12$ ")	$a=\operatorname{INT}(" 12 ")$
String to float	$a=\operatorname{float("12.3")}$	$a=\operatorname{FLOAT}(" 12.3 ")$
integer to string	$a=\operatorname{str}(12)$	$a=\operatorname{STR}(12)$
real to string	$a=\operatorname{str}(12.3)$	$a=\operatorname{STR}(12.3)$

Concatenation -merge multiple strings together		$\begin{aligned} & \text { a="hello" } \\ & \text { b="world" } \\ & \text { c=a+b } \\ & \text { print (c) -> } \\ & \text { hello world } \end{aligned}$	
Return the position of a character If there is more than 1 of the same character the position of the first character is returned.		student = "Hermion student.index('i')	
Find the character at a specified position		student = "Hermion print(student[2])	
sub strings - select parts of a string			
Example	student="Harry Potter"		
Output the first two characters	print (student[0:2])		Ha
Output the first three characters	print(student[:3])		Har
Output characters 2-4	print (student [2:5])		Rry
Output the last 3 characters	print (student[-3:])		Ter
Output a middle set of characters	print (student[4:-3])		y Pot

*A negative value is taken from the end of the string.
Subroutines are a way of managing and organising programs in a structured way. This allows us to break up programs into smaller chunks.

- Can make the code more modular and more easy to read as each function performs a specific task.
- Functions can be reused within the code without having to write the code multiple times.
- Procedures are subroutines that do not return values
- Functions are subroutines that have both input and output

Procedure: No input parameters or return	SUB greeting() OUTPUT "hello" EndSUB	```def greeting(): print("hello") call: greeting()```
Procedure: One input parameter, no return	SUB greeting(name) output "Hello", name EndSub	```def greeting(name): print("Hello",name) greeting("grey")```
Function: 1 input parameter, and 1 return value	$\begin{aligned} & \text { SUB add (n) } \\ & a \leftarrow 0 \\ & \text { FOR } a \leftarrow 0 \text { TO n } \\ & a \leftarrow a+n \\ & \text { ENDFOR } \\ & \text { RETURN a } \\ & \text { ENDSUB } \end{aligned}$	```def add(n): a=0 for a in range(n+1): a=a+n return a```
Function: Two input parameters, and 1 return value	SUB (num1, num2) sum=num1 + num 2 return sum	```def add(num1,num2): sum=num1+num2 return sum greeting(1,2)```

The scope of a variable determines which parts of a program can access and use that variable.

A global variable is a variable that can be used anywhere in a program. The issue with global variables is that one part of the code may inadvertently modify the value because global variables are hard to track.

A local variable is a variable that can only be accessed within a certain block of ode typically within a function. Local variables are not recognized outside a function unless they are returned. There is no way of modifying or changing the behavior of a local variable outside its scope.

Global variables need to defined throughout the running of the whole program. This is an inefficient use of memory resources. Local variables are defined only when they are needed an so have less demand on memory. Local variables only exist within the subroutine.

Reading and writing files

pen file Whatever we are doing to a file whether we are reading, writing or adding to or modifying a file we first need to open it using:
open(filename,access_mode)
There are a range of access mode depending on what we want to do to the file, the principal ones are given below:

Access Mode	Description
r	Opens a file for reading only
w	Opens a file for writing only. Create a new file if one does not exist. Overwrites file if it already exists.
a	Append to the end of a file. Create a new file if one does not exist.

Reading text files

read - Reads in the whole file into a single string	f=open("filetxt","r") print(f.read()) f.close()
readline-Reads in each line one at a time	f=open("file.txt","r") print(f.readline()) print(f.readline()) print(f.readline()) f.close()
readlines - Reads in the whole file into a list	f=open("file.txt","r") print(f.readlines()) f.close()

Writing text files

Write in single lines at a time
file=open("days.txt",'w')
file.write("Monday $\backslash n$ ")
file.write("Tuesday $\backslash n$ ")
file.write ("Wednesday $\backslash n$ ")
file.close()
Write in a list
say=["How\n","are\n","you\n"]
file=open("say.txt",'w')
file.writelines(say)
file.close()

Data Validation Routines

Check if an entered string has a minimum length

OUTPUT "Enter String"
$\mathrm{s} \leqslant$ USERINPUT
IF LEN (S) > 5 THEN OUTPUT "STRING OK" ELSE
OUTPUT "TOO SHORT"
ENDIF

Check is a string is empty	OUTPUT "Enter String"
$\mathrm{s} \leftarrow$ USERINPUT	
IF LEN $(S)==0$ THEN	
OUTPUT "EMPTY STRING"	

IF LEN (S) == 0 THEN
OUTPUT "EMPTY STRT ENDIF

Check if data entered lies within OUTPUT "Enter number" s num \leftarrow a given range USERINPUT
IF num > 1 AND num < 10 OUTPUT "Within range" ENDIF

Authentication Routine

OUTPUT "Enter Username"
username \leftarrow USERINPU'
OUTPUT "Enter Password"
password \leftarrow USERINPUT
WHILE username != "bart" OR password !="abc"
OUTPUT "Login failed"
OUTPUT "Enter Username"
username \leftarrow USERINPUT
output "Enter Password"
password \leftarrow USERINPUT
EnDwhile
OUTPUT "Login Successful"

Debugging

Syntax errors - Errors in the code that mean the program will not even run at all. Syntax errors - Errors in the code that mean the program will not even run at all.
Normally this is things like missing brackets, spelling mistakes and other typos.

Runtime errors - Errors during the running of the program. This might be because the program is writing to a memory location that does not exist for instance. eg. An array index value that does not exist.

Logical errors - The program runs to termination, but the output is not what is expected. Often these are arithmetic errors.

Test data

Code needs to be tested with a range of different input data to ensure that it works as expected under all situations. Data entered need to be checked to ensure
that the input values are: that the input values are:

- within a certain range
- in correct format
- the correct length
- The correct data type (eg float, integer, string)

The program is tested using normal, erroneous or boundary data.

Normal data - Data that we would normally expect to be entered. For example for the age of secondary school pupils we would expect integer values ranging from 11 to 19 .

Erroneous data - Data that are input that are clearly wrong. For instance, if some entered 40 for the age of a school pupil. The program should identify this as invalid data but at the same time should be able to handle this sensibly which returns a sensible message and the program does not crash.

Boundary data - Data that are on the edge of what we might expect. For instance if someone entered their age as $10,11,19$ or 20 .

