
Representing Sound

Analogue and Digital

• Analogue data is the sound wave.
• The microphone (transducer) is a sensor

that converts the sound wave into a
continuous electrical analogue signal.

• To store the signal on the computer it
needs to be converted to digital data using
an ADC (Analogue to Digital Converter)

• The digital data is stored as a sequence of
discrete values that are used to encode the
signal.

• To listen to the digital sound that is stored
in the computer a DAC (Digital to Analogue
Converter) is used to create an electrical
analogue signal.

• A vibrating speaker then converts the
electrical signal into a sound wave.

Analogue to digital conversion
For sound to be stored digitally on a computer it needs to be converted from its
continuous analogue form into a discrete binary values.
1. The analogue signal is sampled at regular intervals.
2. The samples are approximated to the nearest integer (quantised).
3. Each integer is encoded as a binary number with a fixed number of bits.

0001 0010 0011 0100 0100

Original analogue signal Signal sampled at regular intervals

An integer value given to each sample

Amplitude - Represents the size of the wave and impacts the volume. The bigger
the amplitude the bigger the volume.

Frequency - Number of cycles per second is measured in Hertz (Hz). Frequency
impacts the pitch, so the higher the frequency the higher the pitch.

Sample - Measure of amplitude at a given point in time

Sample rate is number of samples per second

Sampling resolution is the number bits per sample

Sample resolution at 4 bits per sample

Sample resolution at 2 bits per sample

The size of sound files can be calculated using the following formula:

File size = length x sample rate x sampling resolution

where length is in seconds

Worked example: What is the size of a 30 second sound clip in kilobytes that is
sampled at 8000 samples per second with a sample resolution of 16 bits?

30 x 8000 x 16 = 3840000 bits / 8x1000 = 480 Kbytes

Nyquist theorem states that we need to sample at least at twice the rate of the
highest frequency. That is we need to sample twice per cycle in order for us to
resolve that frequency.

Musical Instrument Digital Interface (MIDI)
MIDI is synthesised music.

A MIDI file is a set of instructions that contains messages (or events) on how to
produce a sound for a digital device.

MIDI is not stored music.

Information contained in a MIDI event

• Note-on
• Note-off (Both note on and note off give the event duration)
• Key pressure (Aftertouch – how hard a key is pressed
• Pitch
• Velocity
• Vibrato
• Volume
• Pitch Bend

This is not an exhaustive list, other information is also contained in a MIDI event.

A collection of events taken together allow us to produce a piece of music
Advantages of MIDI
• MIDI files are generally small.
• Can play using different instruments
• Can easily edit MIDI files so there is no need for re-recording
• Can change the key of a piece of music

Sound wave

Microphone

Analogue signal

ADC

Digital data

DAC

Analogue signal

Speaker

Sound wave

Bitmap Graphics

Bitmap images are made up from tiny dots called pixels (picture elements). Each
pixel has a colour associated with it. An image can then be constructed from many
of pixels which will have different colours arranged in rows and columns.

File Dimensions

Total number of pixels = height x width

Colour depth is the number of bits used to represent each pixel in an image. A
black and white image has two colours. Each pixel can be represented by a single
bit where 0 is black and 1 is white.

To represent more colours we can use more bits. For instance if we have 2-bits we
can represent 4 colours because we know have 4 binary code combinations (00,
01, 10, 11) where each code represents a different colour.

If we want to have 8 greyscale colours between black and white we will need 3 bits
per pixel i.e. 23.

With 8 bits we can represent 256 (256=28) colours (or different shades of grey)

Image resolution is the number of pixels per area of image and is often given in
dots per inch (DPI). The more pixels the better the quality of the image. Lower
resolution images may be pixelated.

Low resolution image, pixilation is
clearly evident

High resolution image, quality is much
better

Pixilation occurs when the image is overstretched. In these situations, the image
has a blocky and blurred appearance. This arises when the image is presented at
too large a size and there are not enough pixels to reproduce the details in the
image at this larger size.

2-bit image with corresponding values

00 black
10 light grey
01 dark grey
11 white

01 11 00 00 11
01 11 00 00 11
11 10 11 01 11
11 10 11 01 11
00 00 00 01 11

Metadata is information about the images and is stored within the image itself.
Metadata includes information on the:

• dimensions such as width and height
• colour depth in bits
• Resolution

The size of a bitmap image as stored on a file is calculated by multiplying the
length, width and colour depth of the image.

File size in bits = width x height x colour depth (number bits per pixel)

File size in bytes = (width x height x colour depth) / 8

Worked Example
If the width of a bitmap image is 1000 pixels, the height is 2000 pixels and the
colour depth is 8 bits, estimate the size of the image in Mbytes.

Total number of pixels: 1000 X 2000 = 2,000,000
Colour depth is 8 bits = 1 byte.
The size of the file is: 1 X 2,000,000 bytes
To convert to Mb we divide by 1,000,000
The file size in Mb is: 2Mb

Vector Graphics

Vector graphics are made up of primitive shapes such as point, lines and polygons.
Complex shapes can be constructed by combining basic primitive shapes.

Vector graphics are scalable meaning whatever size the images are represented at
they do not lose their quality like bitmap graphics.

Vector graphics are made up of lists of primitive shapes that have various
properties.

Note how the graphic below is made up of different shapes.

The properties of the shapes are stored in a list.
rect width="80" height="80" x="150" y="70" fill="red"

rect width="40" height="40" x="170" y="90" fill="white"

rect width="200" height="80" x="70" y="150" fill="red"

line x1="30" y1="275" x2="350" y2="275" stroke="grey"

circle cx="110" cy="255" r="20" fill="blue"

circle cx="230" cy="255" r="20" fill="blue"

The properties include the size, position and colour of the object.

Properties for a rectangle
width="80"

height="80"

x="150”

y="70"

fill="red"

dimension
dimension
position
position
fill colour

Properties for a circle
radius="50"

x="150”

y="70"

fill="red"

dimension
position
position
fill colour

Properties for a point
x="150”

y="70"

color="red"

position
position
fcolour

Properties for a line
x1="150”

y1="70"

x2="100”

y2="30"

colour="red"

width="red"

position
position
position
position
colour
line width

Vector Versus Bitmap Graphics

 Bitmap graphics

Fundamentally made of
pixels.

Vector graphics

Made up of primitive shapes
such as point, lines and
polygons.

Advantages Suitable for representing
photographs of complex
scenes with a multitude of
colours, such as
photograph of landscapes

Suitable for simple graphics with
a limited range of colours such
as logos and cartoons.

Much smaller in size than
bitmap graphics

Vector graphics are scalable
meaning that they retain their
quality regardless of the scale at
which they are viewed.

Much better for editing. Can
modify individual objects easily
and supports layering in graphics
packages.

Disadvantages Pixilation occurs when the
image becomes
overstretched. The quality
of bitmap image degrades
as you zoom in.

Poor at representing images
with lots of colours

Data Compression

The purpose of data compression is to make the files smaller which means that:

• Less time / less bandwidth to transfer data
• Take up less space on the disk

Data compression can be applied to all sorts of files including images, sound and
text.

Lossy versus Lossless Compression

Lossless compression - The original uncompressed representation can be
recreated exactly from the compressed image. That is, we can reverse the
compression and the uncompressed data file will be exactly (down to the last bit)
the same as the original file.

Lossy compression reduces the size of the file but the original uncompressed data
will not be able to be fully recreated. Lossy compression only approximates the
uncompressed data and the original data will be irrecoverable. Some of the quality
of the original file will be lost. The benefit is that files using lossy compression will
be smaller than those using lossless compression.

Run Length Encoding (RLE)

Run Length Encoding is a compression method where sequences of the same

values are stored in pairs of the value and the number of those values.

RLE is a lossless compression method.

For instance, the sequence:

 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1

would be represented as:

3 0 2 1 1 0 4 1 1 0 4 1

Given that there are 7 bits per ASCII character, the uncompressed size of an ASCII

phrase is:

size = number of characters (including spaces) x 7

Suppose we have a sequence of the following ASCII characters:

Goooooooaaaaallll

Uncompressed size: 17 x 7 = 119 bits

With RLE compression this would be: 1G, 7o, 5a, 4l

Suppose we store the number of each character in 3 bits and we the ASCII

characters are 7 bits then we have:

001 1000111 111 1101111 101 1100001 100 1101100

RLE compressed: 7x4 + 3x4 = 40 bits

Dictionary based methods

With dictionary-based compression methods we use a dictionary to encode and
decode the message.

We are going to compress the following chorus from a song by the Beatles:
“We all live in a yellow submarine yellow submarine yellow submarine”

Each ASCII character is 7 bits and there is a total of 67 characters including spaces
so the total message is 67 x 7 bits which is 469 bits.

Using the dictionary method there are 4 by 11 = 44 bits. Ignoring the dictionary,
this is more than ten times compression on the original message. Of course using
a repetitive message helps compress the message.

For a short message we are not reducing the volume of data because the
dictionary itself will have volume and in fact we may even increase the volume of
data compared with the original uncompressed message however for long
messages the dictionary method of compression will save us space.

Dictionary

word Encoding

We 0000

all 0001

live 0010

in 0011

a 0100

yellow 0101

submarine 0110

Complete encoding

word Encoding

We 0000

all 0001

live 0010

in 0011

a 0100

yellow 0101

submarine 0110

yellow 0101

submarine 0110

yellow 0101

submarine 0110

WARNING: Sometimes compression will increase the size of the file. For instance,
perform RLE compression on the following sequence:

1 0 1 0 1 0 1 0 1 0 1 0 1 (13 bits)

This would be:

11 01 11 01 11 01 11 01 11 01 11 01 11 (26 bits)

The size of the file has been doubled by applying a compression algorithm!

Encryption

When transferring sensitive information from one place to another it is necessary
to encrypt the message. Encryption means that the message is scrambled from its
original plaintext into ciphertext. A key is required in order to understand the
original message.

Plaintext is the original message

Ciphertext is the encrypted message

Given enough time, ciphertext and computational power nearly all methods of
encryption can be cracked using cryptoanalysis.

Cryptoanalysis is the breaking of encrypted codes without being given the key.
Only the Vernam cipher has proven to be unbreakable.

Caesar Cipher
The Caesar cipher is a shift substitution cipher. It works by replacing a letter with
another letter that is shifted along in the alphabet by a set number of places. The
key is a letter and lets us know the number of letters we shift the alphabet by. So
for instance a key of E means that we would shift by 4 places.

In the example below we are using a key W so we shift by 22 places to the left.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

This can be represented as a wheel. The letters on the outer wheel represent the
original letters, the letters on the inside are the corresponding encrypted letter.

• The word MARCH would be encrypted as IWNYD
• To decrypt the message we use reverse the process. So XASWNA would be

BEWARE

Cryptoanalysis of Caesar Cipher

• The Caesar cypher is not a secure method of encryption and is easy to crack
using two methods.

• Try all 25 shifts and apply it to the cipher text. When you have a sensible
plaintext message then you have cracked the encryption and found the key.

• Alternatively, if you had a long enough piece of cyphertext you could use
frequency analysis of letters. E is the most commonly used letter, so the most
commonly letter in the cyphertext will likely be a E and from there is it a trivial
step to calculate the key

Vernam (one-time pad) cipher
With a Vernam cipher we have perfect security. It is the only cipher that has
proven impossible to break using cryptoanalysis. To help achieve this the Vernam
cipher has three features:
• The key is only used once
• The length of the key is at least long as the message that we want to send.
• It is truly random

Applying the Vernam Cipher

Original Message Hello

Convert to ASCII
plain text

1001000 1100101 1101100 1101100 1101111

Generate a random
key

!d7sY

Key in ASCII 0100001 1100100 0110111 1110011 1011001

Apply bitwise XOR
to key and plain text

1001000 1100101 1101100 1101100 1101111
0100001 1100100 0110111 1110011 1011001
1101001 0000001 1011011 0011111 0110110

Encrypted message
(cypher text)

1101001 0000001 1011011 0011111 0110110

To decrypt apply
the XOR operator to
the cypher text and
the key

1101001 0000001 1011011 0011111 0110110
0100001 1100100 0110111 1110011 1011001
1001000 1100101 1101100 1101100 1101111

Plain text 1001000 1100101 1101100 1101100 1101111

