
Programming - Python

Comment – Text within the code that is ignored by the computer. A Python

comment is preceeded by a #.

This is an example of a comment

Output – Processed information that is sent out from a computer

Python Pseudocode

print(“Hello World!”)

Hello World!

print(“Hello”, “World!”)

Hello World!

print(“Hello”+”World!”)

HelloWorld!

print(“Hello\nWorld!”)

Hello

World!

OUTPUT “Hello World”

Input – Data sent to a computer to be processed

print(“Enter name”)

name=input()

print(“Hello”, name)

print(“Enter age”)

age=int(input())

OUTPUT “Enter name”

name  USERINPUT

OUTPUT “Hello”, name

OUTPUT “Enter age”

age  USERINPUT

Assignment - The allocation of data values to variables, constants, arrays and

other data structures so that the values can be stored.

• Variable – Value that can change during the running of a program. By
convention we use lower case to identify variables (eg a=12)

• Constant – Value that remains unchanged for the duration of the program. By
convention we use upper case letters to identify constants. (e.g. PI=3.141)

When writing code it is advantageous to use a named constant because you only
have to change the value of the constant, rather than changing the value each time
it is use. Compare the following two programs that do the same thing. If we wish
to change the value of the constant 12, we only need to change the value once if
we use a named constant, otherwise we need to change the value every it is used
which.

Only need to change the

value of A once

A=12

b=A*3

c=A+1

d=A-4

Need to change the value

each time it is used

b=12*3

c=12+1

d=12-4

It is good practice to give meaningful names to variables and constants.

Example variable names

Variable name has no meaning
so we should not use

a=”Bart Simpson”

Camel case: Start of each
word apart from the first has a
capital letter

nameOfStudent=“Bart Simpson”

Snake case: uses an
underscore between each
word

name_of_student =“Bart Simpson”

Data Types – determines what value a variable can hold and the operation that

can be performed on a variable

Integer age = 12 A whole number

Float (real) number height = 1.52 A number with a decimal point

Character a = ‘a’ A single letter, number or symbol

String name = “Bart” Multiple characters

Boolean a = True

b = False

Has two values; true or false

Pointer Represents the memory location

of the data in memory

Arithmetic Operators

Add 7 + 2 = 9 7 + 2

Subtract 7 – 2 = 5 7 - 2

Multiply 7 * 2 = 14 7 * 2

Divide 4 / 2 = 2 4 / 2

power 2 ** 3 = 8 2 ** 3

Integer division 7 // 2 = 3 7 DIV 2

Modulus (remainder) 7 % 2 = 1 7 MOD 2

Rounding round(3.14159, 2), round

to 2 d.p.

Truncation – remove all
digits after the decimal point

import math

math.trunc(3.141) -> 3

int(3.141) -> 3

Round up to nearest integer math.ceil(3.141) -> 4

Round down to nearest
integer

math.floor(3.141) -> 3

Relational Operators – Allows the Comparison of values

Less than < < 7<2 -> False

Greater than > < 7 > 2 -> True

Equal to == == 7==2 -> False

Not equal to != ≠ or <> 7!=2 -> True

Less than or equal to <= ≤ 7<=2 -> False

Greater than or equal to >= ≥ 7>=2 -> True

Boolean Operators

AND and 7 < 2 and 1 < 2 -> False

OR or 7 < 2 or 1 < 2 -> False

NOT not not 7 < 2 -> True

Sequencing represents a set of steps. Each line of code will have some

operation and these operations will be carried out in order line-by-line

Using + operator for adding

a = 1

b = 2

c = a + b

print(c) -> 3

a ← 1

b ← 2

c ← a + b

OUTPUT c

Using + operator for concatenation

a = ‘Hello ’

b = ‘World’

c = a + b

print(c) -> Hello World

a ← ‘Hello ’

b ← ‘World’

c ← a + b

OUTPUT c

Random number

Random
integer

import random

random.randint(0,9)

RANDOM_INT(0,9)

Choice random.choice(‘a’,’b’,’c’)

Random value
from 0 to 1

random.random()

Selection represents a decision in the code according to some condition. The

condition is met then the block of code is executed otherwise it is not. Often
alternative blocks of code are executed according to some condition.

x=RANDOM_INT()

IF x < 10 THEN

 y=1

ELSE

 y=0

ENDIF

IF …

IF i > 2 THEN

 j  10

ENDIF

if i > 2:

 j=10

IF … ELSE …

IF i > 2 THEN

 j  10

ELSE

 j  3

ENDIF

if i > 2:

 j=10

else:

 j=3

IF ... ELSE IF … ELSE IF i ==2 THEN if i ==2:

 j  10

ELSE IF i==3

 j  3

ELSE

 j  1

ENDIF

 j=10

elif i==3:

 j=3

else:

 j=1

Iteration Sometimes we wish the code to repeat a set of instructions

Indefinite iteration
 WHILE loops are used when the we do not know beforehand the number of

iterations needed and this varies according to some condition. The condition is
defined at the start of the interative structure.

x = 0

while (x < 10):

 x = x + 1

while True:

 print(“Hello World”)

WHILE TRUE

 OUTPUT “Hello World”

ENDWHILE

a=0

while a<4:

 print(a)

 a=a+3

a  0

WHILE a < 4

 OUTPUT a

 a  a + 3

ENDWHILE

REPEAT loops are another indefinite iteration but are not supported by Python.

Here the condition is at the end of the iterative structure

a ← 1

REPEAT

 OUTPUT a

 a ← a + 1

UNTIL a←4

Definite Iteration
FOR loops are used when we know before hand the number of iterations we wish

to make.

for a in range(3):

 print(a)

FOR a ← 0 TO 3

 OUTPUT a

ENDFOR

Nested structures - Use constructs (e.g. WHILE, FOR, IF) inside one

another.

use a nested FOR loop to

print out a grid

for i in range (10):

 for i in range (10):

 print ("x ",end="")

 print()

Use a nested while and if
to print out only even
numbers

i=0

while i<51:

 if (i%2==0):

 print(i)

 i=i+1

Lists (Arrays)

Allow us to storage multiple values in a single data structure

Create a list shapes=["square","circle"]

Access element by index pos shapes[1] -> circle

Append item to list shapes.append(“triangle”)

Remove item from list shapes.remove(“circle”)

Remove item from list by
index

shapes.pop(1)

Insert item into list shapes.insert(2,”rectangle”)

Number of elements in a list len(shapes)

Get index pos of item in list shapes.index(“triangle”)

Concatenating lists shapesGroup1[“square”,”circle”]

shapesGroup2=[“triangle”]

shapes=shapesGroup1+shapesGroup2

Loop through list

for i in range(len(shapes)):

 print(shapes[i])

Reverse elements in a list shapes.reverse()

Order elements in a list shapes.sort()

2D lists - A list if lists

Create a 2D list

d = [[23, 14, 17], [12, 18, 37],

[16, 67, 83]]

Another way to
create a 2D list

a = [23, 14, 17]

b = [12, 18, 37]

c = [16, 67, 83]

d = [a,b,c]

Access element by
index position

d[1][2] -> 37

Strings

Get length of a string len(“Hello”) LEN(“Hello”)

Character to character code ord("a") -> 97 ORD("a")

Character code to character chr(101) -> ‘e’ CHR(101)

String to integer a=int(“12”) a=INT(“12”)

String to float a=float(“12.3”) a=FLOAT(“12.3”)

integer to string a=str(12) a=STR(12)

real to string a=str(12.3) a=STR(12.3)

Date/time string conversions

date/time
to string

import datetime

t = datetime.datetime.now()

print("current date and time:", t)

print("Full year:", t.strftime("%Y"))

print("year:", t.strftime("%y"))

print("month:", t.strftime("%m, %B, %b"))

print("day:", t.strftime("%d"))

print("hour", t.strftime("%H"))

print("minute:", t.strftime("%M"))

print("second:", t.strftime("%S"))

print("time:", t.strftime("%H:%M:%S"))

print("date and time:",t.strftime("%m/%d/%Y,

%H:%M:%S"))

string to
date/time

import datetime

date_str = "8 February, 2020, 20:56:48"

print("date_string =", t)

print("type of date_str =", type(date_str))

date_obj =

datetime.datetime.strptime(date_str, "%d %B,

%Y, %H:%M:%S")

print(date_obj)

Concatenation -merge multiple strings
together

a=“hello ”

b=“world”

c=a+b

print(c) ->

hello world

Return the position of a character
If there is more than 1 of the same
character the position of the first
character is returned.

student = “Hermione"

student.index(‘i')

Find the character at a specified
position

student = “Hermione"

print(student[2]) -> r

sub strings - select parts of a string

Example student=“Harry Potter”

Output the first two characters print(student[0:2]) Ha

Output the first three characters print(student[:3]) Har

Output characters 2-4 print(student[2:5]) Rry

Output the last 3 characters print(student[-3:]) Ter

Output a middle set of

characters

print(student[4:-3])

y Pot

*A negative value is taken from the end of the string.

Records
Records are data structures that contain different fields often with different data
types. We can retrieve and update the record using the field name, in contrast to
lists we have to use the index position to access and element.

Create a
record

class Player(object):

 def __init__(self, name=None, team=None, salary=None):

 self.name = name

 self.team = team

 self.salary = salary

Add
values to
record

messi = Player('Lionel Messi', 'Barcelona', 5000000)

beckham = Player()

beckham.name = 'David Beckham'

beckham.team = 'Manchester United'

beckham.salary = 2000000

To
retrieves
values

print(messi.name, messi.team, messi.salary))

Subroutines are a way of managing and organising programs in a structured

way. This allows us to break up programs into smaller chunks.

• Can make the code more modular and more easy to read as each function
performs a specific task.

• Functions can be reused within the code without having to write the code
multiple times.

• Subroutines are “out-of line” code that are run by writing the name of the
subroutine.

• Data are input into a subroutine via parameters

• Procedures are subroutines that do not return values

• Functions are subroutines that have both input and output and erturn values

Procedure:
No input
parameters or
return

SUB greeting()

 OUTPUT “hello”

ENDSUB

def greeting():

 print(“hello”)

call: greeting()

Procedure: One
input
parameter, no
return

SUB

greeting(name)

 OUTPUT

“Hello”,name

ENDSUB

def greeting(name):

 print(“Hello",name)

greeting(“grey”)

Function:
1 input
parameter, and
1 return value

SUB add(n)

 a ← 0

 FOR a ← 0 TO n

 a ← a + n

 ENDFOR

 RETURN a

ENDSUB

def add(n):

 a=0

 for a in range(n+1):

 a=a+n

 return a

Function:
Two input
parameters, and
1 return value

SUB (num1,num2)

 sum=num1+num2

 return sum

def add(num1,num2):

 sum=num1+num2

 return sum

greeting(1,2)

The scope of a variable determines which parts of a program can access and use
that variable.

A global variable is a variable that can be used anywhere in a program. The issue
with global variables is that one part of the code may inadvertently modify the
value because global variables are hard to track.

A local variable is a variable that can only be accessed within a subroutine. Local
variables are not recognized outside subroutine. Local variables only exist while
the subroutine is executing. There is no way of modifying or changing the behavior
of a local variable outside its scope.

Global variables need to defined throughout the running of the whole program.
This is an inefficient use of memory resources. Local variables are defined only
when they are needed an so have less demand on memory. Local variables only
exist within the subroutine.

Reading and writing files

Open file Whatever we are doing to a file whether we are reading, writing or
adding to or modifying a file we first need to open it using:

open(filename,access_mode)

There are a range of access mode depending on what we want to do to the file, the
principal ones are given below:

Access
Mode

Description

r Opens a file for reading only

w Opens a file for writing only. Create a new file if one does not exist.
Overwrites file if it already exists.

a Append to the end of a file. Create a new file if one does not exist.

rb Open a binary file for reading

wb Opens a binary file for writing only. Create a new file if one does not
exist. Overwrites file if it already exists.

Reading text files

read – Reads in the whole file into a
single string

f=open("filetxt","r")

print(f.read())

f.close()

readline – Reads in each line one at a
time

f=open("file.txt","r")

print(f.readline())

print(f.readline())

print(f.readline())

f.close()

readlines – Reads in the whole file into
a list

f=open("file.txt","r")

print(f.readlines())

f.close()

Writing text files

Write in single lines at a
time

file=open("days.txt",'w')

file.write("Monday\n")

file.write("Tuesday\n")

file.write("Wednesday\n")

file.close()

Write in a list say=["How\n”,”are\n”,”you\n”]

file=open("say.txt",'w')

file.writelines(say)

file.close()

Read CSV (Comma Separated values) files

CSV files can be read in spreadsheets and they are a very useful file format. Python

is set up to read these files using:

csv.reader(file)

Example code:

import csv

def read_csv_file(csv_file):

 l=[]

 file=open(csv_file)

 r=csv.reader(file)

 num=0

 for i in r:

 l.append(i)

 num=num+1

 file.close()

 return l

print(read_csv_file("file.csv"))

Reading binary files

Use the specifier rb.

f = open("file.bin", "rb")

print(f.read())

f.close()

Writing binary files

Create a byte object using a byte literal by including a b at the before the string.
Use the specifier wb.

s = b"Hello World"

f = open("file.bin", "wb")

f.write(s)

f.close()

Reading to files using Pickle

Pickle converts python objects into bytes

f = open("file.bin", "rb")

print(f.read())

f.close()

Writing to files using Pickle

import pickle

f=open("file.pic","wb")

pickle.dump("Hello",f)

pickle.dump("World",f)

f.close()

Exception Handling

An exception occurs when a program cannot deal with an error. The program
needs to handle the exception otherwise the program will terminate.

We use try and except blocks to catch exceptions.

Simple try and except try:

 statement

Except:

 Statement

Try and except with multiple
exceptions

try:

 statement

except exception 1:

 statement

except exception 2:

 statement

Try and except and else try:

 statement

except exception:

 statement

else:

 statement

Finally is a block of code that
mush execute whether an
exception is raised or not

try:

 statement

except:

 statement

finally:

 statement

Examples of Common Exception Errors in Python

TypeError Occurs
when a wrong
data type is used

try:

 b = "cat" + 3

except TypeError:

 print("Type error")

FileNotFoundError
Occurs when a file
does not exist

try:

 file=open("nonExistentFile","r")

except FileNotFoundError:

 print("File Not Found")

NameError Occurs
when a variable
that has been
referenced has
not been assigned

try:

 print(b)

except NameError:

 print("Name Error")

else:

 print("all Good")

ZeroDivisionError
When a division
by zero occurs

try:

 print(3/0)

except ZeroDivisionError:

 print("Zero division error")

ValueError
Incorrect value

try:

 num = int("a")

except ValueError:

 print("Value Error")

IndexError
When a
referenced index
in a list is out of
range

try:

 a=[1,2,3,4,5]

 print(a[6])

except IndexError:

 print("Index Error")

finally:

 print("This will always be run")

Data Validation Routines

Check if an entered string has a
minimum length

OUTPUT “Enter String”

s  USERINPUT

IF LEN(S) > 5 THEN

 OUTPUT “STRING OK”

ELSE

 OUTPUT “TOO SHORT”

ENDIF

Check is a string is empty

OUTPUT “Enter String”

s  USERINPUT

IF LEN(S) == 0 THEN

 OUTPUT “EMPTY STRING”

ENDIF

Check if data entered lies within
a given range

OUTPUT “Enter number” s num 

USERINPUT

IF num > 1 AND num < 10

 OUTPUT “Within range”

ENDIF

Authentication Routine

OUTPUT “Enter Username”

username  USERINPUT

OUTPUT “Enter Password”

password  USERINPUT

WHILE username != "bart" OR password !="abc"

 OUTPUT “Login failed”

 OUTPUT “Enter Username”

 username  USERINPUT

 OUTPUT “Enter Password”

 password  USERINPUT

ENDWHILE

OUTPUT “Login Successful”

Debugging

Syntax errors – Errors in the code that mean the program will not even run at all.
Normally this is things like missing brackets, spelling mistakes and other typos.

Runtime errors – Errors during the running of the program. This might be because
the program is writing to a memory location that does not exist for instance. eg.
An array index value that does not exist.

Logical errors - The program runs to termination, but the output is not what is
expected. Often these are arithmetic errors.

Test data

Code needs to be tested with a range of different input data to ensure that it
works as expected under all situations. Data entered need to be checked to ensure
that the input values are:

• within a certain range
• in correct format
• the correct length
• The correct data type (eg float, integer, string)

The program is tested using normal, erroneous or boundary data.
Normal data - Data that we would normally expect to be entered. For example for
the age of secondary school pupils we would expect integer values ranging from 11
to 19.

Erroneous data - Data that are input that are clearly wrong. For instance, if some
entered 40 for the age of a school pupil. The program should identify this as
invalid data but at the same time should be able to handle this sensibly which
returns a sensible message and the program does not crash.

Boundary data - Data that are on the edge of what we might expect. For instance
if someone entered their age as 10, 11, 19 or 20.

