
Computer Architecture
Internal Hardware Components

Motherboard
The motherboard is a circuit board that enables
all the other components to be connected to it
either directly via slots or cables. Normally the
graphics and sound cards are integrated into
motherboard allowing you to access then via
hardware ports.

Hard Disk
The hard disk allows you to store and retrieve
documents, music, pictures and any other files.
Even when there is no power, the data remain
unchanged and can be accessed once again once
power has been restored.

Processor
The processor fetches, decodes and executes
instructions and performs logical and arithmetic
operations.

Main Memory
The purpose of main memory is to store the instructions from the programs
currently running on a computer system and to temporarily hold the data needed
by those programs.

Random Access Memory RAM memory is volatile. This means that when the
computer is turned off the contents of volatile memory is lost. When there is no
power, volatile memory is erased When you create a document that you do not
save, if the computer crashes, the document will be lost because it is only stored
in RAM which is volatile memory. If you have saved the document to the hard disk
drive then you will be able to retrieve the document once power has returned.
Every time the computer is powered up the operating system needs to be copied
into the RAM from secondary storage. This is what happens during the boot
sequence.

Input / Output Controller
The input and output controller manages hardware devices such as hard disk,
monitor and keyboard. This is helpful for the processor because the processor
does no need to control each device. In any case each device will have different
control signals, so the processor can delegate the task of managing the input and
output devices to the input / output controller.

• Input controller – eg manages mouse, keyboard

• Output controller – eg manages monitor, printer

• Input / Output disk controller – eg manages the secondary storage devices.

Buses
• The data bus is a set of wires that allows the transfer of data between

different computer components including the main memory, processor and
input/output controllers. The data bus sends data in both directions for the

processor, and memory, but input controllers send data only and output
controllers receive data only.

• The address bus specifies the physical memory address that we wish to write
data to or read from. The processor sends address requests and all the other
components receive requests.

• The control bus is used to send commands from the processor to other
components and to receive status signals from the components. The control
bus sends signals in both directions for all components.

The Stored Program Concept
The instructions are stored in main memory. The instructions are fetched,
decoded and executed in the processor.

von Neumann Architecture
• For systems using von Neumann architecture the program instructions and

the data to be processed are stored in the same memory.
• Instructions and data have to be retrieved one at a time.
• General purpose computers are based on von Neumann architecture.

von Neumann bottleneck
The von Neumann bottleneck refers to the latency for transferring data and
instructions between memory and the processor. Even if the speed of memory
and the processor are improved, in the von Neumann architecture we are still
limited by the speed of transfer of data between the two components. This is
because both the data and instructions use the same buses.

Harvard Architecture
With Harvard architecture there are separate memory storage for the instructions
and the data. This allows simultaneous retrieval both data and instructions on
each processor cycle therefore speeding up the throughput of instructions and
data and reducing latency. Harvard Architecture is typically used in embedded
systems and used for signal processing. The program is stored onboard the
processor in ROM.

Addressable Memory

• Each location in memory has an address associated with it. The data refers to
the content at each location. We can access the data in memory by
referencing to the memory location and writing to or reading the values in
these memory locations.

• With word addressing the typical size of each memory location is the word
length of the system (typically 32 or 64 bits)

• With byte addressing each memory location can hold one byte.

• The number of memory addresses is determined by the address bus width.
For instance, if the bus address bus width is 32 bits then 232 address locations
can be accessed.

Structure and role of the processor and its components

Processor (CPU) Components

• Arithmetic logic unit – The arithmetic and logic operations take place here.
• Control unit – Decodes the instruction, splits it into the opcode and operand

and identifies the specific arithmetic operation.
• Clock – The purpose is to keep all the processor components synchronised.

The clock controls the processor so that it can process the instructions one-
by-one and in the correct order.

• Registers – Memory locations on the CPU. Much faster than cache and RAM
however also much smaller. Used to store frequently accessed data and
instructions. There are two types of registers general purpose and registers
dedicated to a specific purpose.

Dedicated Registers
• Memory Address Register (MAR) – The address in main memory that we wish

to fetch the instruction from
• Memory Buffer Register (MBR) – Holds the instruction that has been fetched

from memory
• Current instruction register (CIR) – Holds the contents of MBR, which is the

instruction to be processed
• Program Counter (PC) – This holds the memory address of the location to

fetch the next instruction from.
• Status Register (SR) – Gives information on such things as

overflow/underflow, interrupts, parity. The status register allows an
instruction to depend the outcome of the previous instruction.

• Accumulator – Holds the results of arithmetic and logic computations

Fetch Decode Execute Cycle

1. The instructions are loaded into memory
2. The processor fetches the instruction from the main memory
3. The instruction is decoded so the CPU knows what to do with the instruction
4. The processor then executes the instruction
5. The result of the instruction can be stored in memory
6. The next instruction is then fetched from main memory and the cycle repeats

itself

1. Transfer the contents of the PC
to the MAR

2. The contents at that address is

transferred back to the MBR
along the data bus At the same
time the PC is incremented by
one to get ready for the next
cycle.

3. Transfer the contents of the

MAR to the CIR ready to be
decoded.

4. Control unit decodes

instruction held in CIR into
operand and opcode

5. Instruction executed by ALU for

instance and result stored in
Accumulator. Status register
updated

Processor Schematic

Fetch

1. Fetch: MAR [PC]

• Transfer the contents of the PC to the MAR
• The address in MAR is transferred to main memory along the address bus

2. Fetch: MBR [Memory]MAR_address ; PC [PC] +1

• The contents at that address is transferred back to the MBR along the data

bus
• At the same time the PC is incremented by one to get ready for the next cycle.

This can be done because the two steps do not rely on one another.

3. Fetch: CIR [MBR]

• Transfer the contents of the MAR to the CIR ready to be decoded.
• This allows the MBR to be used to store the next instruction during the

decode and execution stages.

4. Decode [CIR]
• The control unit decodes the instruction held by the current instruction

register.
• The instruction is divided into the opcode and the operand

5. Execute [CIR]
• The instruction is executed in the arithmetic logic unit.
• The result is stored in the accumulator register
• The status register is updated

Processor Instruction Set
The instruction set is a set of machine language commands for the processor. Each
processor architecture will have its own unique instruction set. Thus, any code
written in machine code or assembly language will be processor specific.
Nevertheless, all processor architectures will have a common set of operations
that include:
• Data transfer between internal components
• arithmetic operations
• Logical operations
• Shift operations
• Branching
• Comparison

Instructions
• Instructions are made up of two parts: the opcode and the operand.
• The opcode determines the operation that is to be carried out (eg. ADD,

LOAD).
• The operand is the value or memory address that that instruction is to be

operated on.
• The opcode in turn is split into two parts: The basic machine operation and

the addressing mode.

Addressing Mode
The addressing mode determines how the operand is interpreted. There are many
addressing modes but we are only interested in two: The immediate addressing
mode and the direct addressing mode.

• Immediate addressing mode – The data value in the operand is part of the
instruction. In other words this is the actual value we apply the operation to.

• Direct addressing mode – The operand specifies the address of the data in its
memory location

Opcode and Operand

Opcode Operand

Basic Machine
operation

Addressing
mode

0 1 0 0 0 0 1 1

In the example we have allocated 8 bits to each instruction. Four bits are allocated
to the operand thus 16 (24) possible addresses in memory are accessible or data
values. Four bits are allocated to the opcode 1 of which is 1 given over to the

addressing mode. Thus we have 2 (21) addressing modes, and 8 (23) machine
operations.

Examples

Opcode Assembler
instruction

Description

010 0 0101 LOAD #5 010 - Load the value 5 into accumulator register
0 - direct addrsssing mode (# on the operand
refers to direct addressing mode, its absence
implies immediate addressing mode
101 – binary value 5

100 0 0100 ADD #4 100 - ADD to value already in accumulator register
0 - Direct addressing
100 – binary value 4

101 1 1111 STORE 15 101 - Copy the contents of the accumulator register
1 – Immediate addressing
1111 - binary value 15 (memory location)

Assembly Language

Data transfer operations

Instruction Description Example Example description

LDR R, M Value in main memory
address M loaded into
register R

LDR R1, 100 Load value at memory
location 100 into
register R1

STR R, M Value in register R
stored in main memory
address location M

STR R1, 100 Store value in R1 into
main memory location
100

MOV R, #V Copy data value #V
register R

MOV R1,
#12

Copy the number 12
into register R1.

The # refers to immediate addressing ie the value is the data.

Arithmetic operations

Instruction Description Example Example description
ADD Ra,

Rb,

<operand>

Add values in
registers in Rb and Rc
and load result in
register Ra

ADD R1,

R1, #102
ADD R1,

R1, R2

Add 102 to the value
in register R1 and

store the value in
register R1

Add the value stored
in R2 and add to the
value stored in R1 and
output the result.

SUB Ra,

Rb,

<operand>

Subtract value in
registers in Rc from
Rb and load result in
register Ra

SUB R2,

R1, #102
SUB R2,

R1, R3

Subtract 102 from the
value in register R1

and store the result in
register R2

subtract the value
stored in R3 from the
value in R1 and store
the result in R2

The <operand> can be a register or a data value. The register is indicated by R and
a data value is preceded by a #.

Logical shift operations

Instruction Description Example Example description
LSL Ra,

Rb,

<operand>

Logical shift left
value in register Ra

by <operand>

value and store in
register Ra

LSL R1,

R1, #2
LSL R1,

R1, R2

Logical shift left value
in R1 by 2 and store in

register R1

Logical shift left value
in R1 by value in R2

and store in register
R1

LSR Ra,

Rb,

<operand>

Logical shift left
value in register Ra

by <operand>

value and store in
register Ra

LSR R1,

R1, #2
LSR R1,

R1, R2

Logical shift right value
in R1 by 2 and store in

register R1

Logical shift right value
in R1 by value in R2

and store in register
R1

Eg 310 << 210; 310 = 0112; 011002 = 1210

Logical operations

Instruction Description Example Example description

AND Ra,
Rb,

<operand>

Bitwise AND operation
between value in
register Rb and

<operand> and

store result in Ra

AND R1,

R1, #8
Bitwise AND operation
between value in R1

and 8
10

 (00001000
2
)

and store result in R1

ORR Ra,

Rb,

<operand>

Bitwise OR operation
between value in
register Rb and

<operand> and

store result in Ra

ORR R1,

R1, #8
Bitwise OR operation
between value in R1

and 8
10

 (00001000
2
)

and store result in R1

EOR Ra,

Rb,

<operand>

Bitwise XOR operation
between value in
register Rb and

<operand> and

store result in Ra

EOR R1,

R1, #8
Bitwise XOR operation
between value in R1

and 8
10

 (00001000
2
)

and store result in R1

MVN R,

<operand>
Bitwise NOT operation
on <operand> and

store in R

MVN R1,

#8
Bitwise NOT operation

on 8
10

 (00001000
2
)

and store result in R1

(11110111
2
)

Control

Instruction Description
CMP R, <operand> Compare value in register R with <operand>

value
B <label> Branch to position <label>
BEQ <label> Branch to position <label> if result of last

comparison between R and <operand> was equal
BNE <label> Branch to position <label> if result of last

comparison was not equal between R and
<operand>

BGT <label> Branch to position <label> if R was greater than

<operand> in the last comparison comparison
BLT <label> Branch to position <label> if R was less than

<operand> in the last comparison
HALT Terminate execution of program
CMP R, <operand> Compare value in register R with <operand>

value

Example selection (if .. else ..)

LDR R1, 100

LDR R2, 102

ADD R1, R1, R2

CMP R1, #10

BEQ IF

STR R1, 101

B ELSE

IF:

STR R1, 102

ELSE:

HALT

Example selection (if …)

LDR R1, 100

LDR R2, 102

ADD R1, R1, R2

CMP R1, #10

BNE end

STR R1, 102

end:

HALT

Example iteration

MOV R0, #0

loop:

ADD R0 R0 #1

CMP R0 #4

BNE loop

STR R0 0

HALT

Interrupts

• Interrupts are messages from software applications or hardware that request
processing resources from the processor.

• If the processor is performing operations already then those processes can be
interrupted and suspended and the CPU processes the interrupt request

• An interrupt service routine will be executed depending on the type of
interrupts.

• When an interrupt occurs, the data and instruction in the program counter
from the interrupted job are stored in the stack so that the job can be
restored after the interrupt has been dealt with.

• Once the interrupt has been completed the processor resumes the job it was
currently processing from where it left off. It can do this because the
instructions and data are loaded back into program counter from the stack.

Examples of interrupts
• Hardware commands (computer reset)
• Software (error detection, Overflow error)
• Timer
• Input/output (Pressing a key on a keyboard, Moving the mouse)

Factors affecting processor performance
Clock speed

• This is the number of cycles that a processor carries out in an second.
• Nowadays a typical processor on a PC can have a clock speed ranging between

2GHz and 4GHz. That means there can be 2-4 billion cycles per second.
• Each cycle of the CPU allows a single instruction to be carried out.
• Thus the greater the clock speed, the greater the number of operations and

the faster the computer will run.

Moore’s law

• Moore’s law states that the number of transistors on a processors doubles
every 18 months.

• The number of transistors is related to the clock speed of a processor.
• There is evidence that this trend is slowing and it will reach a physical limit

where there will be so many transistors that they produce too much heat.

Number of processor cores

A core is processor. Instead of making the processors with a higher clock speed
(which will result in the processors getting too hot), manufacturers add more
cores. Processors will have at least one core. Nowadays, most processors have
dual (2) or even quad (4) cores to boost performance. Having multiple cores
allows instructions to be carried out in parallel (at the same time), whereas a
single core will only allow carry out instructions in serial (one at a time).

Cache size
Cache is a volatile memory store on the processor, and is not to be confused with
RAM and registers. Cache is much faster but smaller that RAM. Frequently used
data and instructions within an application can be stored in cache instead of
fetching from RAM which is quite slow. In other words there is greater latency -
Delay in transfer of data after the execution of an instruction. The bigger the cache
the greater the volume of data and instructions that can be stored at a time and
consequently increases the performance of the CPU as latency is reduced.

Cache type
Cache Level is a trade off between size and speed
• Level 1 Cache - This is closest to the CPU and is the fastest cache because of

the lowest latency, but does not have much capacity
• Level 2 Cache – is slower and further away from the CPU than Level 1 cache

because of increased latency, but has more storage capacity.
• Level 3 Cache – is the slower than L1 and L2 cache but still much faster than

RAM, but has greater capacity than L1 and L2.

Word length
• The word length is the number of bits that can processed in one go.
• Typical word length of most processor architectures are 32 or 64 bits.
• The greater the word length the more bits that can be processed in one cycle.
• Address bus width
The address bus width determines the number of locations in main memory that
can be accessed.
For instance if the bus address bus width is 32 bits then 232 address locations can
be accessed.

Data bus width
The data bus width refers to the number of bits that can be transferred at a time
between the main memory and the processor. Increasing the data bus width can
reduces the number of read write operations.
• If the data bus width is the same as the word length then one instruction can

be transferred at a time.
• It the data bus width is twice the word length they two instruction can be

transferred at a time.
• If the data bus width is half the word length the two read requests will need

to be made for a single instruction.

