Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3,0,92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers.	3 + 2 + 7 = 12
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one . 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of $20 \div 6$ is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$
10. Recurring Decimal	A decimal number that has digits that repeat forever .	$\frac{1}{3} = 0.333 \dots = 0.3$
	The part that repeats is usually shown by placing a dot above the digit that repeats, or dots over the first and last digit of the repeating pattern.	$\frac{1}{7} = 0.142857142857 \dots$ $= 0.142857$
		$\frac{77}{600} = 0.128333 \dots = 0.1283$

Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an integer.	The first five multiples of 7 are:
	The times tables of a number.	
• -		7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
	it is useful to write factors in pairs	1 18
		2.9
		3.6
3. Lowest	The smallest number that is in the times tables of	The LCM of 3, 4 and 5 is 60
Common	each of the numbers given.	because it is the smallest number
Multiple		in the 3, 4 and 5 times tables.
(LCM)		
4. Highest	The biggest number that divides exactly into two	The HCF of 6 and 9 is 3 because
Common	or more numbers.	it is the biggest number that
Factor (HCF)		divides into 6 and 9 exactly.
5. Prime	A number with exactly two factors.	The first ten prime numbers are:
Number	A number that can only be divided by itself and	2 2 5 7 11 12 17 10 22 20
	A number that can only be divided by itself and	2, 3, 3, 7, 11, 13, 17, 19, 23, 29
	one.	
	The number 1 is not prime, as it only has one	
	factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		
		2, 3
7. Product of	Finding out which prime numbers multiply	
Prime Factors	together to make the original number.	
		$36 = 2 \times 2 \times 3 \times 3$
	Use a prime factor tree.	(2) 18 or $2^2 \times 3^2$
	Also known og 'nnime factorization'	
	Also known as prime factorisation.	(2) 9
		3 3

Topic: Accuracy

Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is
	number.	in the 'tens' column.
2. Place Value Columns	The names of the columns that determine the value of each digit . The 'ones' column is also known as the 'units' column.	Millions Hundred Thousands Ten Thousands Hundreds Thousands Hundreds Tents Point Tenthousandts Tenthousandts Hundred-Thousandts Millionths Millionths
3. Rounding	To make a number simpler but keep its value close to what it was.	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80.
	If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	152,879 rounded to the nearest thousand is 153,000.
4. Decimal	The position of a digit to the right of a	In the number 0.372, the 7 is in the
Place	decimal point.	second decimal place.
		0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down. Careful with money - don't write £27.4
		instead write $\pounds 27.40$
5. Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number. The first significant figure of a number cannot be zero	In the number 0.00821, the first significant figure is the 8. In the number 2.740, the 0 is not a significant figure.
	In a number with a decimal, trailing zeros	0.00821 rounded to 2 significant figures is 0.0082.
	are not significant.	19357 rounded to 3 significant figures is 19400. We need to include the two zeros at the end to keep the digits in the same place value columns.
6. Truncation	A method of approximating a decimal number by dropping all decimal places past a certain point without rounding .	3.14159265 can be truncated to 3.1415 (note that if it had been rounded, it would become 3.1416)
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal
Interval	have taken before being rounded or truncated.	place.
		The error interval is:
	An error interval is written using inequalities, with a lower bound and an upper bound .	$0.55 \le x < 0.65$
		The lower bound is 0.55

Topic: Accuracy

Topic/Skill	Definition/Tips	Example
	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	The upper bound is 0.65
8. Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
9. Approximation	When using approximations to estimate the solution to a calculation, round each	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$
	figure.	'Note that dividing by 0.5 is the same as multiplying by 2'
	\approx means 'approximately equal to'	
10. Rational	A number of the form $\frac{p}{q}$, where <i>p</i> and <i>q</i> are	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational
Number	integers and $q \neq 0$.	numbers.
	A number that cannot be written in this form is called an 'irrational' number	π , $\sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a	$\sqrt{2}$ is a surd because it is a root which
	positive integer, whose value cannot be	cannot be determined exactly.
	determined exactly.	
	Surds have infinite non-recurring decimals.	$\sqrt{2} = 1.41421356$ which never repeats.
12. Rules of	$\sqrt{ab} = \sqrt{a} imes \sqrt{b}$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$
Surus	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	$\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$
	$a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$	$2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$
	$\sqrt{a} imes \sqrt{a} = a$	$\sqrt{7} \times \sqrt{7} = 7$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers .	$\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$
		$\frac{6}{3+\sqrt{7}} = \frac{6(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}$
		$= \frac{18 - 6\sqrt{7}}{9 - 7}$ $= \frac{18 - 6\sqrt{7}}{2} = 9 - 3\sqrt{7}$

Topic: Fractions

Topic/Skill	Definition/Tips	Example
1. Fraction	A mathematical expression representing the division of one integer by another	$\frac{2}{7}$ is a 'proper' fraction.
	division of one integer by another.	0
	Fractions are written as two numbers	$\frac{2}{4}$ is an 'improper' or 'top-heavy'
	separated by a horizontal line.	fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{5}$, 3 is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}$, 5 is the denominator.
4. Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer.	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ <i>etc.</i> are examples of unit fractions.
5. Reciprocal	The reciprocal of a number is 1 divided by the number .	The reciprocal of 5 is $\frac{1}{5}$
	The reciprocal of x is $\frac{1}{x}$	The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because
	When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'.	$\frac{2}{3} \times \frac{3}{2} = 1$
6. Mixed Number	A number formed of both an integer part and a fraction part .	$3\frac{2}{5}$ is an example of a mixed number.
7. Simplifying Fractions	Divide the numerator and denominator by the highest common factor.	$\frac{20}{45} = \frac{4}{9}$
8. Equivalent Fractions	Fractions which represent the same value .	$\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} \text{ etc.}$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common	Put in to ascending order : $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$.
	denominator.	Equivalent: $\frac{9}{12}$, $\frac{8}{12}$, $\frac{10}{12}$, $\frac{6}{12}$
	Ascending means smallest to biggest.	
	Descending means biggest to smallest	Correct order: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$
10 Fraction of	Divide by the bottom times by the top	Γ_{12}^{12} of CCO
an Amount	bivide by the bottom, times by the top	Find $\frac{1}{5}$ of ± 60
		50 - 5 = 12 12 × 2 = 24
11. Adding or	Find the LCM of the denominators to find	2 4
Subtracting	a common denominator.	$\overline{3}^+\overline{5}$
Fractions	Use equivalent fractions to change each	Multiples of 3: 3, 6, 9, 12, 15
	Iraction to the common denominator .	Numples of 5: 5, 10, 15 I CM of 3 and $5 - 15$
		1 - 10

		Topic: Fractions
Topic/Skill	Definition/Tips	Example
	Then just add or subtract the numerators	2 10
	and keep the denominator the same .	$\overline{3} = \overline{15}$
		4 12
		$\overline{5} = \overline{15}$
		$\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
12.	Multiply the numerators together and	3 2 6 1
Multiplying	multiply the denominators together.	$\frac{1}{8} \times \frac{1}{9} = \frac{1}{72} = \frac{1}{12}$
Fractions		
13. Dividing	'Keep it, Flip it, Change it – KFC'	3 5 3 6 18 9
Fractions	Keep the first fraction the same	$\frac{1}{4} \div \frac{1}{6} = \frac{1}{4} \times \frac{1}{5} = \frac{1}{20} = \frac{1}{10}$
	Flip the second fraction upside down	
	Change the divide to a multiply	
	Multiply by the reciprocal of the second fraction.	

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10% , divide by 10	$10\% \text{ of } \pounds 36 = 36 \div 10 = \pounds 3.60$
3. Finding 1%	To find 1% , divide by 100	1% of $\pounds 8 = 8 \div 100 = \pounds 0.08$
4. Percentage Change	Difference Original × 100%	A games console is bought for £200 and sold for £250. % change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to Fractions	Write as a fraction over 10, 100 or 1000 and simplify.	$0.36 = \frac{36}{100} = \frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
8. Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
9. Fractions to Percentages	Percentage is just a fraction out of 100. Make the denominator 100 using equivalent fractions . When the denominator doesn't go in to 100, use a calculator and multiply the fraction by 100 .	$\frac{3}{25} = \frac{12}{100} = 12\%$ $\frac{9}{17} \times 100 = 52.9\%$
10. Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify.	$14\% = \frac{14}{100} = \frac{7}{50}$

Topic: Calculating with Percentages

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		0.83 x 800 = 664
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question , then work backwards to find 100%	10% reduction. Find its original price.
		100% - 10% = 90%
	Look out for words like ' before ' or	
	'original'	$90\% = \pounds 48.60$
	8	$1\% = \pounds 0.54$
		$100\% = \pounds 54$
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		$10\% \text{ of } \pounds 1000 = \pounds 100$
		Interest = $3 \times \pounds 100 = \pounds 300$

Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = 6x - 2y + 3 $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x2x2=8$, not 2x3=6
8. p + p + p	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by 'taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5
2. Inverse	Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.Be careful of $5x^2$. You need to square first, then multiply by 5.	a = 3, b = 2 and c = 5. Find: 1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
	$ax^2 + bx + c$	$\frac{x^2}{8x^2 - 3x + 7}$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ 9x - 1
2. Factorising	When a quadratic expression is in the form	$x^{2} + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^{2} + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
	to give b and multiply to give c.	multiply to give 10)
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x+5)(x-5)$
of Two Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics $(\pi u^2 - h)$	Sides.	$x^2 = 49$
$(ax^2 = b)$	negative solution.	$x = \pm 7$
5. Solving	Factorise and then $solve = 0$.	$x^2 - 3x = 0$
Quadratics		x(x-3)=0
$(ax^2 + bx = 0)$		x = 0 or x = 3
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(<i>a</i> = 1)	Make sure the equation = 0 before factorising.	x = -5 or x = 2
7. Factorising Ouadratics	When a quadratic is in the form $ax^2 + bx + c$	Factorise $6x^2 + 5x - 4$
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give $+5$ and
	multiply to give ac.	multiply to give -24 are +8 and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	A Eactorise in pairs you should get the	4. Factorise in pairs: 2x(2x + 4) = 1(2x + 4)
	same bracket twice	2x(3x + 4) - 1(3x + 4) 5 Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of	
	the factors outside each of the two brackets.	
8. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $2x^2 + 7x - 4 = 0$
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	$x = \frac{1}{2}$ or $x = -4$
		2

Topic: Sequences

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the
		third term of the sequence.
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	add 3
	previous term.	
		Sequence 1s: 2, 5, 8, 11
4. nth term	A rule which allows you to calculate the	nth term is $3n - 1$
	term that is in the nth position of the	- costhe cost cost
	sequence.	The 100^{m} term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a	
5. Finding the	1. Find the difference.	Find the nth term of: $3, 7, 11, 15$
nth term of a	2. Nultiply that by <i>n</i> .	1 D'fferrer is 14
linear	3. Substitute $n = 1$ to find out what	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with $4n$
	get the first number in the sequence.	$3.4 \times 1 = 4$, so we need to subtract 1
		to get 3.
		nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An anomala of a Fiboracci tura
		An example of a Fibonacci-type
		<i>k</i> 7 11 10 20
7 Triongular	The sequence which comes from a nettern	4, /, 11, 10, 27
7. Thangular	of dots that form a triangle	1 3 6 10
numbers		
	1 3 6 10 15 21	
	1, 3, 0, 10, 13, 21	

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a shape. Units include: <i>mm, cm, m</i> etc.	8 cm 5 cm P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a Rectangle	Length x Width	9 cm
		4 cm $A = 36 cm^2$
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	4 cm $3 cm7 \text{cm} A = 21 \text{cm}^2$
5. Area of a Triangle	Base x Height ÷ 2	9 4 5 $A = 24cm^2$
6. Area of a Kite	Split in to two triangles and use the method above.	$A = 8.8m^2$

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
7. Area of a	$\frac{(a+b)}{b} \times h$	
Irapezium	2 "Half the sum of the parallel side, times the height between them. That is how you calculate the area of a trapezium"	$\xleftarrow{6 \text{ cm}}{5 \text{ cm}} A = 55 \text{ cm}^2$
8. Compound Shape	A shape made up of a combination of other known shapes put together.	- +

Topic: Ratio

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
2 Droportion	Written using the 's symbol.	In a class with 12 hours and 0 sinks the
2. Proportion	Proportion compares the size of one part to the size of the whole	In a class with 15 boys and 9 girls, the 13 13 14
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5:10 = 1:2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
A Deties in the	Distil e hade werde af des made her and af des	7
4. Ratios in the	Divide both parts of the ratio by one of the numbers to make one part equal 1	$5:7 = 1:\frac{1}{5}$ in the form 1: n
n: 1	numbers to make one part equal 1.	$5:7 = \frac{5}{7}:1$ in the form n : 1
<i>n</i> ., 1		/
5. Sharing in a	1. Add the total parts of the ratio.	Share $\pounds 60$ in the ratio $3:2:1$.
Ratio	2. Divide the amount to be shared by this	
	value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	rauo.	$5 \times 10 = 50, 2 \times 10 = 20, 1 \times 10 = 10$ f = 10, f = 10
	Use only if you know the total .	250.220.210
6. Proportional	Comparing two things using multiplicative	×2
Reasoning	reasoning and applying this to a new	
	situation.	30 minutes 60 pages
		? minutes 150 pages
	Identify one multiplicative link and use this	X 2
7 Unitory	to find missing quantities.	2 colves require 450g of sugar to make
7. Unitary Method	finding the necessary value by multiplying	Find how much sugar is needed to
withind	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (\div by 3)$
0		So 5 cakes = $750 \text{ g} (\text{x by 5})$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		amount of money shared
		amount of money shared.
		$\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
		$3 + 2 + 5 = 10$ parts, so $8 \ge 10 = \text{\pounds}80$
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
	the quantity.	13 cakes for $\pm 2.05 \rightarrow 15.8p$ each (\div by
	I ne lowest number is the best value.	13) Peak of 12 apkes is best value
		rack of 15 cakes is dest value.

Topic: Compound Measures

Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1 kilometres = 1000 metres
System		1 metre = 100 centimetres
	- the metre for length	$1 \ centimetre = 10 \ millimetres$
	- the kilogram for mass	
	- the second for time	1 kilogram = 1000 grams
	Longthe mm am m km	
	Mass: ma a ka	
	Volume: ml. cl. l	
2. Imperial	A system of weights and measures	1lb = 16 ounces
System	originally developed in England, usually	1 foot = 12 inches
5	based on human quantities	1 gallon = 8 pints
	-	
	Length: inch, foot, yard, miles	
	Mass: lb, ounce, stone	
	Volume: pint, gallon	
3. Metric and	Use the unitary method to convert	$5 \text{ miles} \approx 8 \text{ kilometres}$
Imperial Units	between metric and imperial units.	$1 \text{ gallon} \approx 4.5 \text{ litres}$
		2.2 pounds ≈ 1 kilogram
		1 inch = 2.5 centimetres
4. Speed,	Speed = Distance ÷ Time	Speed = 4mph
Distance, Time	Distance = Speed x Time	Time $= 2$ hours
	Time = Distance ÷ Speed	
	2	Find the Distance.
		$D = S \times T = 4 \times 2 = 8$ miles
		$D = 5 \times 1 = 4 \times 2 = 0$ milles
	<u>s</u> 1	
	Remember the correct units.	
5. Density,	Density = Mass ÷ Volume	Density = 8kg/m^3
Mass, Volume	Mass = Density x Volume	Mass = 2000g
	Volume = Mass ÷ Density	
		Find the Volume.
		$V = M \div D = 2 \div 8 = 0.25m^{\circ}$
C Dreagger at	Remember the correct units.	Dressure 10 Descel
o. Pressure,	$rressure = rorce \div Area$ Force - Prossure x Area	$Pressure = 10 Pascals$ $Area = 6 cm^2$
roice, Alea	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	
		Find the Force
	F	
		$F = P \times A = 10 \times 6 = 60 N$
	Pamambar the correct units	
	Kemember the correct units.	

Topic: Compound Measures

Topic/Skill	Definition/Tips	Example
7. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km)

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of Angles	 Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°. 	Acute Right Obtuse Reflex
2. Angle	Can use one lower-case letters, eg. θ or x	~ B
Notation	Can use three upper-case letters, eg. <i>BAC</i>	
3. Angles at a Point	Angles around a point add up to 360°.	$a + b + c + d = 360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x}{y}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	$\frac{y}{x}$
7. Corresponding Angles	Corresponding angles are equal . They look like F angles, but never say this in the exam.	$\frac{y/x}{x}$

		Topic: Angles
Tonic/Skill	Definition/Tins	Example
8. Co-Interior Angles	Co-Interior angles add up to 180° . They look like C angles, but never say this in the exam.	$\frac{y x}{x y}$
9. Angles in a Triangle	Angles in a triangle add up to 180°.	A 80 ⁰ 80 ⁰ C
10. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	65° 93°
12. Polygon	A 2D shape with only straight edges .	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	

Topic: Angles

Topic/Skill	Definition/Tips	Example
14. Names of Polygons	3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula: 180 – Size of Exterior Angle	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5} = 108^{\circ}$
17. Size of Exterior Angle in a Regular Polygon	$\frac{360}{n}$ You can also use the formula:180 - Size of Interior Angle	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8} = 45^{\circ}$

Topic/Skill Definition/Tips Example 1. Scale The ratio of the length in a model to the Scale 1:10 length of the real thing. Real Horse Drawn Horse 1500 mm high 150 mm high 2000 mm long 200 mm long The ratio of a distance on the map to the 2. Scale (Map) actual distance in real life. 1 in. = 250 mi 1 cm = 160 km200 400 Kilometers 1. Measure from **North** (draw a North line) 3. Bearings 2. Measure clockwise The bearing of B from A3. Your answer must have 3 digits (eg. 047°) Look out for where the bearing is measured from. The bearing of \underline{A} from \underline{B} You can use an acronym such as 'Never 4. Compass Directions Eat Shredded Wheat' to remember the order of the compass directions in a NE NW clockwise direction. F Bearings: $NE = 045^\circ$, $W = 270^\circ etc$. SW SE s

Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
1	• Four right angles	
	Opposite sides parallel	
	• Diagonals hisect each other at right	
	angles	
	Four lines of symmetry	
	Rotational symmetry of order four	
2 Rectangle	• Two pairs of equal sides	
2. Rectangle	Four right angles	//
	Onnosite sides narallel	
	• Diagonals bisect each other not at right	
	angles	
	• Two lines of symmetry	
	Rotational symmetry of order two	
3. Rhombus	• Four equal sides	
	• Diagonally opposite angles are equal	\frown
	• Opposite sides parallel	\rightarrow \times
	• Diagonals bisect each other at right	
	angles	
	• Two lines of symmetry	
	• Rotational symmetry of order two	Ť
4.	• Two pairs of equal sides	
Parallelogram	• Diagonally opposite angles are equal	
	Opposite sides parallel	
	• Diagonals bisect each other, not at right	Ť Ť
	angles	
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	
	length	^
	• One pair of diagonally opposite angles	\times \times
	are equal (where different length sides	$\langle \rangle$
	meet)	
	• Diagonals intersect at right angles, but	
	do not bisect	\sim
	• One line of symmetry	
	No rotational symmetry	
6. Trapezium	• One pair of parallel sides	
	No lines of symmetry	
	No rotational symmetry	
	Special Case: Isosceles Trapeziums have	
	one line of symmetry.	

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle : $a^2 + b^2 = c^2$ a b Used to find missing lengths . a and b are the shorter sides, c is the hypotenuse (longest side) .	Finding a Shorter Side y ID SUBTRACT: 8 $a = y, b = 8, c = 10$ $a^{2} = c^{2} - b^{2}$ $y^{2} = 100 - 64$ $y^{2} = 36$ $y = 6$
2. 3D Pythagoras' Theorem	Find missing lengths by identifying right angled triangles.You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20cm long fit in a pencil tin with dimensions 12cm, 13cm and 9cm? The pencil tin is in the shape of a cuboid. Hypotenuse of the base = $\sqrt{12^2 + 13^2} = 17.7$ Diagonal of cuboid = $\sqrt{17.7^2 + 9^2} =$ 19.8 <i>cm</i> No, the pencil cannot fit.

Topic: Summarising Data

Topic/Skill	Definition/Tips	Example
1. Types of	Qualitative Data – non-numerical data	Qualitative Data – eye colour, gender
Data	Quantitative Data – numerical data	etc.
	Continuous Data – data that can take any numerical value within a given range. Discrete Data – data that can take only specific values within a given range.	Continuous Data – weight, voltage etc. Discrete Data – number of children, shoe size etc.
2. Grouped	Data that has been bundled in to	
Data	categories.	Foot length, <i>l</i> , (cm) Number of children
		$10 \leq l \leq 12$ 5
	Seen in grouped frequency tables,	12 ≤ <i>l</i> < 17 53
	histograms, cumulative frequency etc.	
3. Primary	Primary Data – collected yourself for a	Primary Data – data collected by a
/Secondary Data	specific purpose.	student for their own research project.
	Secondary Data – collected by someone	Secondary Data – Census data used to
	else for another purpose.	analyse link between education and
		earnings.
4. Mean	Add up the values and divide by how many	The mean of 3, 4, 7, 6, 0, 4, 6 is
	values there are.	3+4+7+6+0+4+6
		7 = 5
5. Mean from a	1 Find the midpoints (if necessary)	
Table	2. Multiply Frequency by values or	Height in cm Frequency Midpoint $F \times M$ $0 < h < 10$ 8 5 $8 \times 5 = 40$
	midpoints	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3. Add up these values	$30 < h \le 40$ 6 35 $6 \times 35 = 210$ Total 24 Ignore! 450
	4. Divide this total by the Total Frequency	Estimated Mean
		height: $450 \div 24 =$
	If grouped data is used, the answer will be	18 75cm
	an estimate .	10.750
6. Median Value	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6
	Put the data in order and find the middle	Ordered: 2, 3, 4, 5, 6, 6, 7
	If there are two middle values find the	Median $= 5$
	number half way between them by adding	
	them together and dividing by 2.	
7. Median	Use the formula $\frac{(n+1)}{(n+1)}$ to find the position of	If the total frequency is 15, the median
from a Table	$\frac{1}{2}$ to find the position of	will be the $\left(\frac{15+1}{2}\right) - 8th$ position
	the median.	will be the $\left(\frac{1}{2}\right) = 8th$ position
	n is the total fragments	
9 Mada	<i>n</i> is the total frequency.	Eind the meder 4 5 2 2 6 4 7 8 4
o. Model Velue	wiost frequent/common.	Find the mode: 4, 5, 2, 5, 6, 4, 7, 8, 4
/withat value	Can have more than one mode (called bi	Mode = 4
	model or multi model) or no mode (if all	11000 - 4
	values appear once)	
	values appear once	

Topic: Summarising Data

Topic/Skill	Definition/Tips	Example
9. Range	Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.
	Range is a 'measure of spread'. The smaller	Range = $102-3 = 99$
	the range the more <u>consistent</u> the data.	
10. Outlier	A value that 'lies outside' most of the other	12 10 Outlier
	values in a set of data.	8
	An outlier is much smaller or much	6
	larger than the other values in a set of data.	4
		0 20 40 60 80 100
11. Lower	Divides the bottom half of the data into	Find the lower quartile of: 2, <u>3</u> , 4, 5, 6,
Quartile	two halves.	6,7
	$LQ = Q_1 = \frac{(n+1)}{4} th$ value	$Q_1 = \frac{(7+1)}{4} = 2nd$ value $\rightarrow 3$
12. Lower	Divides the top half of the data into two	Find the upper quartile of: 2, 3, 4, 5, 6,
Quartile	halves.	<u>6</u> , 7
	$UQ = Q_3 = \frac{3(n+1)}{4} th$ value	$Q_3 = \frac{3(7+1)}{4} = 6th$ value $\rightarrow 6$
13.	The difference between the upper quartile	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interquartile	and lower quartile.	
Range		$IQR = Q_3 - Q_1 = 6 - 3 = 3$
	$IQR = Q_3 - Q_1$	
	The smaller the interquartile range, the	
	more consistent the data.	

Topic: Representing Data

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHH 11	7
		2	1111	5
		3	JHH I	6
		4		5
		5		3
		Total		26
2. Bar Chart	Represents data as vertical blocks. x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.		1 2 3 Imber of pets o	4 wned
3. Types of Bar Chart	Compound/Composite Bar Charts show data stacked on top of each other.	80 70 60 50 40 40 40 40 10 0 8 4	B Sample	c
	Comparative/Dual Bar Charts show data side by side.	50 40 30 20 10 Jan Feb Dual E	ainfáll Mar Apr Ma Month Bar Chart	Key: London Bristol

		Topic: Representing Data
Topic/Skill	Definition/Tips	Example
4. Pie Chart	Used for showing how data breaks down into its constituent parts. When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category.	Tennis 36° 40° Hockey 80° Netball
	Remember to label the category that each sector in the pie chart represents.	If there are 40 people in a survey, then each person will be worth 360÷40=9° of the pie chart.
5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key .	Black \bigcirc \bigcirc \bigcirc \bigcirc Red \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Green \bigcirc \bigcirc \bigcirc \bigcirc $=$ 4 cars Others \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	$ \begin{array}{c} 14 \\ 12 \\ 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \end{array} $
7. Two Way Tables	 A table that organises data around two categories. Fill out the information step by step using the information given. Make sure all the totals add up for all columns and rows. 	Question: Complete the 2 way table below. Left Handed Right Handed Total Boys 10 58 Girls

Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	2
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one negative.	
		x = 5 or x = -5
4.0.1		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 2/, 64, 125
Number	The survey has seen and itself again.	$2^{\circ} = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	usen again to get another number.	
	The reverse process of cubing a number	because $5 \times 5 \times 5 = 125$
6 Powers of	The powers of a number are that number .	The powers of 3 are:
0.10weis 01	raised to various powers	The powers of 5 are.
	Taised to various powers.	$3^1 = 3$
		$3^{2} = 9$
		$3^{3} = 27$
		$3^4 = 81$ etc.
7.	When multiplying with the same base	$7^5 \times 7^3 = 7^8$
Multiplication	(number or letter), add the powers.	$a^{12} \times a = a^{13}$
Index Law		$4x^5 \times 2x^8 = 8x^{13}$
	$a^m \times a^n = a^{m+n}$	
8. Division	When dividing with the same base (number	$15^7 \div 15^4 = 15^3$
Index Law	or letter), subtract the powers.	$x^9 \div x^2 = x^7$
		$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	
9. Brackets	When raising a power to another power,	$(y^2)^5 = y^{10}$
Index Laws	multiply the powers together.	$(6^3)^4 = 6^{12}$
		$(5x^6)^3 = 125x^{18}$
	$(a^m)^n = a^{mn}$	2
10. Notable	$p = p^1$	$99999^0 = 1$
Powers	$p^{0} = 1$	

Topic: Standard Form

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \text{ x } 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \times 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Congruence and Similarity

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size . Shapes can be rotated or reflected but still	
	be congruent.	
Triangles	 4 ways of proving that two triangles are congruent: 1. SSS (Side, Side, Side) 2. PUS (Bight angle, Hunsternusz, Side) 	$A \underbrace{\begin{array}{c} & & \\ &$
	 2. KHS (Right angle, Hypotenuse, Side) 3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS 	$BC = DF$ $\angle ABC = \angle EDF$ $\angle ACB = \angle EFD$: The two triangles are
	ASS does not prove congruency.	congruent by AAS.
Shapes	shape but different sizes.	N
	The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal.	
4. Scale Factor	The ratio of corresponding sides of two similar shapes.	
	To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	10 15
	-	Scale Factor = $15 \div 10 = 1.5$
5. Finding missing lengths in similar shapes	 Find the scale factor. Multiply or divide the corresponding side to find a missing length. 	2cm 3cm 4.5cm
	If you are finding a missing length on the larger shape you will need to multiply by the scale factor.	x
	If you are finding a missing length on the smaller shape you will need to divide by the scale factor.	Scale Factor = $3 \div 2 = 1.5$ $x = 4.5 \times 1.5 = 6.75cm$

Topic/Skill	Definition/Tips	Example
6. Similar Triangles	To show that two triangles are similar, show that: 1. The three sides are in the same proportion 2. Two sides are in the same proportion, and their included angle is the same 3. The three angles are equal	y 85° x z Y 85° 55°
		x z

Topic: Congruence and Similarity

Topic/Skill Definition/Tips Example 1. Parallel Parallel lines never meet. Perpendicular lines are at right angles. There is a 90° angle between them. Perpendicular 3. Vertex A corner or a point where two lines meet. vertex 4. Angle Angle Bisector: Cuts the angle in half. 1. Place the sharp end of a pair of Bisector compasses on the vertex. 2. Draw an arc, marking a point on each line. 3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. Angle Bisector 4. Use a ruler to draw a line through the vertex and centre point. Perpendicular Bisector: Cuts a line in Perpendicular half and at right angles. Bisector 1. Put the sharp point of a pair of compasses on A. Line Bisector 2. Open the compass over half way on the line. A B 3. Draw an arc above and below the line. 4. Without changing the compass, repeat from point B. 5. Draw a straight line through the two

2.

5.

intersecting arcs.

Topic: Loci and Constructions

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
6.	The perpendicular distance from a point	
Perpendicular	to a line is the shortest distance to that	
from an	line.	1
External Point		
	1. Put the sharp point of a pair of	P
	compasses on the point.	*
	2. Draw an arc that crosses the line twice.	
	3. Place the sharp point of the compass on	
	one of these points, open over half way and	
	draw an arc above and below the line.	X
	4. Repeat from the other point on the line.	
	5. Draw a straight line through the two	
	intersecting arcs.	
7.	Given line PQ and point R on the line:	
Perpendicular		
from a Point	1. Put the sharp point of a pair of	
on a Line	compasses on point R.	
	2. Draw two arcs either side of the point of	
	equal width (giving points S and T)	
	3. Place the compass on point S, open over	
	A Depend from the other are on the line.	
	4. Repeat from the other arc on the line	P S R ^{12}Q
	(point 1).	
	5. Draw a straight line from the line	
	ares to the original point on the line.	
8. Constructing	1. Draw the base of the triangle using a	
Triangles	ruler.	
(Side, Side,	2. Open a pair of compasses to the width of	
Side)	one side of the triangle.	
	3. Place the point on one end of the line and	
	draw an arc.	
	4. Repeat for the other side of the triangle	
	at the other end of the line.	
	5. Using a ruler, draw lines connecting the	
	ends of the base of the triangle to the point	
	where the arcs intersect.	
9. Constructing	1. Draw the base of the triangle using a	
Triangles	ruler.	A
(Side, Angle,	2. Measure the angle required using a	\sim
Side)	protractor and mark this angle.	4cm
	3. Remove the protractor and draw a line of	7 \
	the exact length required in line with the	
	angle mark drawn.	B <u>∕50°</u> C
	4. Connect the end of this line to the other	/cm
	end of the base of the triangle.	

Topic/Skill Definition/Tips Example 1. Draw the base of the triangle using a 10. Constructing ruler. Triangles 2. Measure one of the angles required using (Angle, Side, a protractor and mark this angle. Angle) 3. Draw a straight line through this point from the same point on the base of the triangle. 51° ′42° 4. Repeat this for the other angle on the 8.3cm other end of the base of the triangle. 11. 1. Draw the base of the triangle using a Constructing ruler. an Equilateral 2. Open the pair of compasses to the exact Triangle (also length of the side of the triangle. makes a 60° 3. Place the sharp point on one end of the line and draw an arc. angle) 4. Repeat this from the other end of the line. 5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point R where the arcs intersect. A locus is a path of points that follow a 12. Loci and Regions rule. For the locus of points closer to B than A, create a **perpendicular bisector** between A and B and shade the side closer to B. Points Closer to B than A For the locus of points equidistant from A, use a compass to draw a circle, centre A. Points less than Points more than cm from A 2cm from A For the locus of points equidistant to line X and line Y, create an angle bisector. For the locus of points a set **distance from** a line, create two semi-circles at either end D E joined by two parallel lines.

Topic: Loci and Constructions

		Topic: Loci and Constructions
Topic/Skill	Definition/Tips	Example
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same .	

Topic/Skill Definition/Tips Example 1. Coordinates Written in **pairs**. The **first** term is the xcoordinate (movement across). The A: (4,7) second term is the y-coordinate B: (-6,-3) (movement **up or down**) 2. Midpoint of Method 1: add the x coordinates and Find the midpoint between (2,1) and a Line divide by 2, add the y coordinates and (6,9)divide by 2 $\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$ Method 2: Sketch the line and find the values half way between the two x and two So, the midpoint is (4,5)y values. Straight line graph. Example: 3. Linear Graph Other The general equation of a linear graph is examples: y = mx + cx = yy = 4where *m* is the gradient and *c* is the yx = -2intercept. y = 2x - 7y + x = 10The **equation** of a linear graph can contain 2y - 4x = 12an x-term, a y-term and a number. 4. Plotting Method 1: Table of Values Construct a table of values to calculate Linear Graphs coordinates. -3 -2 -1 0 1 2 3 v = x + 33 4 5 6 0 1 2 Method 2: Gradient-Intercept Method (use when the equation is in the form y =mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form ax + by = c)

Topic: Coordinates and Linear Graphs

1. Cover the *x* term and solve the resulting

equation. Plot this on the x - axis.

Topic/Skill	Definition/Tips	Example
	2. Cover the y term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	2x + 4y = 8
5. Gradient	The gradient of a line is how steep it is.	
	Gradient = $\frac{Change in y}{Change in x} = \frac{Rise}{Run}$ The gradient can be positive (sloping upwards) or negative (sloping downwards)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6. Finding the Equation of a Line <u>given a</u> <u>point and a</u> <u>gradient</u>	Substitute in the gradient (m) and point (x,y) in to the equation $y = mx + c$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $y = mx + c$ $7 = 4 \times 2 + c$ $c = -1$ $y = 4x - 1$
7. Finding the Equation of a Line <u>given two</u> points	Use the two points to calculate the gradient . Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through (6,11) and (2,3) $m = \frac{11-3}{6-2} = 2$ $y = mx + c$ $11 = 2 \times 6 + c$ $c = -1$ $y = 2x - 1$

Topic/Skill **Definition/Tips** Example Are the lines y = 3x - 1 and 2y - 18. Parallel If two lines are **parallel**, they will have the 6x + 10 = 0 parallel? Lines same gradient. The value of m will be the same for both lines. Answer: Rearrange the second equation in to the form y = mx + c $2y - 6x + 10 = 0 \rightarrow y = 3x - 5$ Since the two gradients are equal (3), the lines are parallel. If two lines are **perpendicular**, the Find the equation of the line product of their gradients will always Perpendicular perpendicular to y = 3x + 2 which Lines equal -1. passes through (6,5)The gradient of one line will be the negative reciprocal of the gradient of the Answer: other line. As they are perpendicular, the gradient of the new line will be $-\frac{1}{3}$ as this is the You may need to rearrange equations of negative reciprocal of 3. lines to compare gradients (they need to be in the form y = mx + c) y = mx + c $5 = -\frac{1}{3} \times 6 + c$ c = 7 $y = -\frac{1}{3}x + 7$ Or 3x + x - 7 = 0

9.

Topic: Coordinates and Linear Graphs

Topic: Circumference and Area

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	•
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} \textbf{S-VAR} & \textbf{p} & \textbf{DISTR} & \textbf{n} & \textbf{F} \textbf{r} \angle \theta & \textbf{Poll} \\ \hline 2 & 3 & \textbf{+} \\ \hline Ran \# & \pi & \textbf{DRG} \\ \bullet & \textbf{EXP} & \textbf{Ans} \end{array}$

Topic: Shape Transformations

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	Q 3 3 4 4 4 7 9 Q 2 3 4 4 7 9 Q 7 4 7 9 Q 7 9 Q 7 9 4 7 9 9 Q 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point . Use tracing paper.	Rotate Shape A 90° anti-clockwise about (0,1) V K'
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$

]	Fopic: Shape Transformations
Topic/Skill	Definition/Tips	Example
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3'
		Scale Factor = ½ means 'half the size = divide by 2'
6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over . Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformations	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed.	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
	If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	

