Topic: Sequences

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the
		third term of the sequence.
3 Term to	A rule which allows you to find the payt	First term is 2. Term to term rule is
term rule	term in a sequence if you know the	add 3'
	previous term	uuu 5
		Sequence is: 2, 5, 8, 11
4. nth term	A rule which allows you to calculate the	nth term is $3n - 1$
	term that is in the nth position of the	
	sequence.	The 100^{th} term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the nosition of a term in a	
	sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	- , . , . ,
linear	3. Substitute $n = 1$ to find out what	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with 4 <i>n</i>
	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1
		to get 3.
		nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An example of a Fibonacci-type
		sequence is:
		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is	An example of a geometric sequence is:
Sequence	found by multiplying the previous one by	2, 10, 50, 250
	a number called the common ratio, r .	The common ratio is 5
		Another example of a geometric
		81 - 279 - 31
		The common ratio is $-\frac{1}{2}$
		The common ratio is $-\frac{1}{3}$
8. Quadratic	A sequence of numbers where the second difference is constant	2 6 12 20 30 42
Sequence		+4 +6 +8 +10 +12
	A quadratic sequence will have a n^2 term.	+2 +2 +2 +2
9 nth term of a	n1	The nth term of 2 10 50 250 Is
geometric	ui ui	The full term of 2, 10, 50, 250 15
sequence	where <i>a</i> is the first term and <i>r</i> is the	$2 \times 5^{n-1}$
	common ratio	

Topic: Sequences

Topic/Skill	Definition/Tips	Example
10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
	3. Substitute $n = 1, 2, 3, 4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40
	the question.	$2n^2$ 2, 8, 18, 32, 50
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	
	nth term of the quadratic sequence.	Nth term of this set of numbers is
		-3n + 5
	Substitute values in to check your nth term	
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
11. Triangular	The sequence which comes from a pattern	
numbers	of dots that form a triangle.	1 3 6 10
	1, 3, 6, 10, 15, 21	

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a shape.	8 cm
	Units include: <i>mm, cm, m</i> etc.	5 cm
		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a Rectangle	Length x Width	$4 \text{ cm} \qquad \qquad$
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	4 cm 3 cm $A = 21 cm^2$
5. Area of a Triangle	Base x Height ÷ 2	9 4 5 $A = 24cm^2$
6. Area of a Kite	Split in to two triangles and use the method above.	$A = 8.8m^2$

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
7. Area of a Trapezium	$\frac{(a+b)}{2} \times h$ "Half the sum of the parallel side, times the height between them. That is how you calculate the area of a trapezium"	$\stackrel{6 \text{ cm}}{\underbrace{5 \text{ cm}}} A = 55 \text{ cm}^2$
8. Compound Shape	A shape made up of a combination of other known shapes put together.	- +

Topic: Ratio

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part .	3:1
	Written using the ':' symbol.	
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{9}{22}$
3. Simplifying Ratios	Divide all parts of the ratio by a common factor .	5 : 10 = 1 : 2 (divide both by 5) 14 : 21 = 2 : 3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5:7 = 1:\frac{7}{5}$ in the form $1:n$
form $1 : n$ or $n : 1$	numbers to make one part equal 1 .	$5:7 = \frac{5}{7}:1$ in the form n : 1
5. Sharing in a Ratio	 Add the total parts of the ratio. Divide the amount to be shared by this value to find the value of one part. Multiply this value by each part of the ratio. 	Share £60 in the ratio $3 : 2 : 1$. 3 + 2 + 1 = 6 $60 \div 6 = 10$ $3 \ge 10 = 30, 2 \ge 10 = 20, 1 \ge 10 = 10$ £30 : £20 : £10
	Use only if you know the total .	
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation. Identify one multiplicative link and use this	X 2 30 minutes 60 pages ? minutes 150 pages
	to find missing quantities.	X 2
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.	3 cakes require 450g of sugar to make. Find how much sugar is needed to make 5 cakes.
		3 cakes = 450g So 1 cake = 150g (÷ by 3) So 5 cakes = 750 g (x by 5)
8. Ratio already shared	Find what one part of the ratio is worth using the unitary method .	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had £16, found out the total amount of money shared.
		$\pounds 16 = 2 \text{ parts}$ So $\pounds 8 = 1 \text{ part}$ $3 + 2 + 5 = 10 \text{ parts}$, so $8 \ge 10 = \pounds 80$

Topic: Ratio

Topic/Skill	Definition/Tips	Example
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $y \propto x$ An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	y $y = kx$
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$ An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	$y = \frac{k}{x}$
3. Using proportionality formulae	Direct: $\mathbf{y} = \mathbf{kx}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse: $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$ 1. Solve to find k using the pair of values in the question. 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from the question in to the equation to find the missing value.	p is directly proportional to q. When p = 12, q = 4. Find p when q = 20. 1. p = kq 12 = k x 4 so k = 3 2. p = 3q 3. p = 3 x 20 = 60, so p = 60

Topic: Proportion

Topic/Skill	Definition/Tips	Example
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs $y = 3x^2$ y = 2x $y = 0.5x^5$
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs $y = \frac{2}{s}$ $y = \frac{3}{s^2}$ $y = \frac{10}{s^2}$

Topic: Compound Measures

Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1kilometres = 1000 metres
System		1 metre = 100 centimetres
	- the metre for length	$1\ centimetre = 10\ millimetres$
	- the kilogram for mass	
	- the second for time	1 kilogram = 1000 grams
	Longth, mm, on, m, km	
	Massi ma a ka	
	Volume: ml cl l	
	volume. mi, ci, i	
2. Imperial	A system of weights and measures	1lb = 16 ounces
System	originally developed in England, usually	1 foot = 12 inches
	based on human quantities	$1 \ gallon = 8 \ pints$
	Length: inch, foot, yard, miles	
	Mass: ID, ounce, stone	
	volume: pint, gallon	
3. Metric and	Use the unitary method to convert	5 miles \approx 8 kilometres
Imperial Units	between metric and imperial units.	$1 gallon \approx 4.5 litres$
_		2.2 pounds \approx 1 kilogram
		1 inch = 2.5 centimetres
4. Speed,	Speed = Distance ÷ Time	Speed = 4mph
Distance, Time	Distance = Speed x Time	Time $= 2$ hours
	Time = Distance ÷ Speed	
		Find the Distance.
		$D = 5 \times I = 4 \times 2 = 8$ miles
	Remember the correct units.	
5. Density.	Density = Mass ÷ Volume	Density = 8kg/m^3
Mass, Volume	Mass = Density x Volume	Mass = 2000g
,	Volume = Mass ÷ Density	
	~	Find the Volume.
	^	
		$V = M \div D = 2 \div 8 = 0.25m^3$
	Remember the correct units.	

Topic: Compound Measures

Topic/Skill	Definition/Tips	Example
6. Pressure,	Pressure = Force ÷ Area	Pressure = 10 Pascals
Force, Area	Force = Pressure x Area	$Area = 6cm^2$
	Area = Force ÷ Pressure	
		Find the Force
	F p X A	$F = P \times A = 10 \times 6 = 60 N$
	Remember the correct units.	
7. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km)

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of Angles	 Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°. 	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, eg. θ or x	В
	Can use unice upper-case ieners, eg. DAC	
3. Angles at a Point	Angles around a point add up to 360°.	$\begin{array}{c c} d \\ c \\ b \\ a+b+c+d = 360^{\circ} \end{array}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x}{y}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	x y x
7. Corresponding Angles	Corresponding angles are equal . They look like F angles, but never say this in the exam.	y / x

		Topic: Angles
Topic/Skill	Definition/Tips	Example
8. Co-Interior Angles	Co-Interior angles add up to 180° . They look like C angles, but never say this in the exam.	$\begin{array}{c} y \\ x \\ y \\ \end{array}$
9. Angles in a Triangle	Angles in a triangle add up to 180°.	A 80 ⁰ 80 ⁰ C
10. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	65° 93°
12. Polygon	A 2D shape with only straight edges .	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	

Topic: Angles

Topic/Skill	Definition/Tips	Example
14. Names of Polygons	3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon	Triangle Quadrilateral Pentagon Hexagon
	8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Heptagon Octagon Nonagon Decagon
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula: 180 – Size of Exterior Angle	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5} = 108^{\circ}$
17. Size of Exterior Angle in a Regular Polygon	$\frac{360}{n}$ You can also use the formula:180 - Size of Interior Angle	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8} = 45^{\circ}$

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle : $a^2 + b^2 = c^2$ a b Used to find missing lengths . a and b are the shorter sides, c is the hypotenuse (longest side).	Finding a Shorter Side y 10 SUBTRACT: 8 $a = y, b = 8, c = 10$ $a^{2} = c^{2} - b^{2}$ $y^{2} = 100 - 64$ $y^{2} = 36$ $y = 6$
2. 3D Pythagoras' Theorem	Find missing lengths by identifying right angled triangles . You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20cm long fit in a pencil tin with dimensions 12cm, 13cm and 9cm? The pencil tin is in the shape of a cuboid. Hypotenuse of the base = $\sqrt{12^2 + 13^2} = 17.7$ Diagonal of cuboid = $\sqrt{17.7^2 + 9^2} =$ 19.8 <i>cm</i> No, the pencil cannot fit.

Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one negative.	
		x = 5 or x = -5
		This can also be written as $r = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Inumber	number by itself and itself again.	$2^{\circ} \equiv 2 \times 2 \times 2 \equiv 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
	The reverse process of cubing a number	because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	$2^{1} - 2$
		$3^{2} = 9$
		$3^3 = 27$
		$3^4 = 81$ etc.
7.	When multiplying with the same base	$7^5 \times 7^3 = 7^8$
Multiplication	(number or letter), add the powers.	$a^{12} \times a = a^{13}$
Index Law	$a^m \times a^n = a^{m+n}$	$4x^3 \times 2x^3 = 8x^{13}$
	u xu = u	
8. Division	When dividing with the same base (number	$15^7 \div 15^4 = 15^3$
Index Law	or letter), subtract the powers.	$x^9 \div x^2 = x^7$
	m n m_n	$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	
9. Brackets	When raising a power to another power,	$(y^2)^5 = y^{10}$
Index Laws	multiply the powers together.	$(6^3)^4 = 6^{12}$
	(am)n = amn	$(5x^6)^3 = 125x^{18}$
	$(a^{n})^{n} = a^{nn}$	
10. Notable	$p = p^1$	$99999^0 = 1$
Powers	$p^{v} = 1$	
		1

Topic: Indices

Topic/Skill	Definition/Tips	Example
11. Negative	A negative power performs the reciprocal.	$2^{-2} - 1 - 1$
Powers	$a^{-m}=rac{1}{a^m}$	$3 = \frac{1}{3^2} = \frac{1}{9}$
12. Fractional	The denominator of a fractional power acts	$27\frac{2}{3} = (\sqrt[3]{27})^2 = 3^2 = 9$
Powers	as a 'root'.	$273 - (\sqrt{27}) = 3 = 3$
	The numerator of a fractional power acts as a normal power.	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$	

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2. Perpendicular	Perpendicular lines are at right angles. There is a 90° angle between them.	
3. Vertex	A corner or a point where two lines meet.	vertex A B C
4. Angle Bisector	 Angle Bisector: Cuts the angle in half. 1. Place the sharp end of a pair of compasses on the vertex. 2. Draw an arc, marking a point on each line. 3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. 4. Use a ruler to draw a line through the vertex and centre point. 	Angle Bisector
5. Perpendicular Bisector	 Perpendicular Bisector: Cuts a line in half and at right angles. 1. Put the sharp point of a pair of compasses on A. 2. Open the compass over half way on the line. 3. Draw an arc above and below the line. 4. Without changing the compass, repeat from point B. 5. Draw a straight line through the two intersecting arcs. 	Line Bisector

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
6. Perpendicular from an External Point	The perpendicular distance from a point to a line is the shortest distance to that line. 1. Put the sharp point of a pair of compasses on the point. 2. Draw an arc that crosses the line twice. 3. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. 4. Repeat from the other point on the line. 5. Draw a straight line through the two intersecting arcs.	
7. Perpendicular from a Point on a Line	 Given line PQ and point R on the line: 1. Put the sharp point of a pair of compasses on point R. 2. Draw two arcs either side of the point of equal width (giving points S and T) 3. Place the compass on point S, open over halfway and draw an arc above the line. 4. Repeat from the other arc on the line (point T). 5. Draw a straight line from the intersecting arcs to the original point on the line. 	$\begin{array}{c} & & & \\ & & & \\ P^{+} & S^{-} & R^{-} & \\ & & & \\ & & & \\ P^{+} & S^{-} & R^{-} & \\ \end{array} $
8. Constructing Triangles (Side, Side, Side)	 Draw the base of the triangle using a ruler. Open a pair of compasses to the width of one side of the triangle. Place the point on one end of the line and draw an arc. Repeat for the other side of the triangle at the other end of the line. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect. 	
9. Constructing Triangles (Side, Angle, Side)	 Draw the base of the triangle using a ruler. Measure the angle required using a protractor and mark this angle. Remove the protractor and draw a line of the exact length required in line with the angle mark drawn. Connect the end of this line to the other end of the base of the triangle. 	B 50° 7cm

Topic/Skill Definition/Tips Example 1. Draw the base of the triangle using a 10. Constructing ruler. Triangles 2. Measure one of the angles required using (Angle, Side, a protractor and mark this angle. Angle) 3. Draw a straight line through this point from the same point on the base of the triangle. 51° ′42° 4. Repeat this for the other angle on the 8.3cm other end of the base of the triangle. 11. 1. Draw the base of the triangle using a ruler. Constructing an Equilateral 2. Open the pair of compasses to the exact Triangle (also length of the side of the triangle. makes a 60° 3. Place the sharp point on one end of the angle) line and draw an arc. 4. Repeat this from the other end of the line. 5. Using a ruler, draw lines connecting the MathBits.con ends of the base of the triangle to the point where the arcs intersect. A locus is a path of points that follow a 12. Loci and Regions rule. For the locus of points **closer to B than A**, create a perpendicular bisector between A and B and shade the side closer to B. Points Closer to B than A. For the locus of points equidistant from A, use a compass to draw a circle, centre A. Points less than Points more than 2cm from A 2cm from A For the locus of points equidistant to line X and line Y, create an angle bisector. For the locus of points a set **distance from** a line, create two semi-circles at either end 'n Е joined by two parallel lines.

Topic: Loci and Constructions

		Topic: Loci and Constructions
Topic/Skill	Definition/Tips	Example
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same .	

Topic/Skill Definition/Tips Example 1. Coordinates Written in **pairs**. The **first** term is the x-A: (4,7) coordinate (movement across). The B: (-6,-3) second term is the y-coordinate (movement **up or down**) -10 -8 ●в 2. Midpoint of Method 1: add the x coordinates and Find the midpoint between (2,1) and divide by 2, add the y coordinates and a Line (6,9)divide by 2 $\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$ Method 2: Sketch the line and find the values half way between the two x and two So, the midpoint is (4,5)y values. 3. Linear Straight line graph. Graph Example: The general equation of a linear graph is Other y = mx + cexamples: x = ywhere *m* is the gradient and *c* is the yy = 4intercept. x = -2y = 2x - 7The **equation** of a linear graph can contain y + x = 10an x-term, a y-term and a number. 2v - 4x = 12Method 1: Table of Values 4. Plotting Construct a table of values to calculate Linear Graphs -3 -2 -1 0 1 2 3 coordinates. v= x +3 5 0 3 Method 2: Gradient-Intercept Method (use when the equation is in the form y =mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form ax + by = c)

Topic: Coordinates and Linear Graphs

	Торіс: Со	oordinates and Linear Graphs
Topic/Skill	Definition/Tips	Example
	 Cover the <i>x</i> term and solve the resulting equation. Plot this on the <i>x</i> – <i>axis</i>. Cover the <i>y</i> term and solve the resulting equation. Plot this on the <i>y</i> – <i>axis</i>. Draw a line through the two points plotted. 	3 - 2 - 1 = 0
5. Gradient	The gradient of a line is how steep it is.	
	Gradient = $\frac{Change \text{ in } y}{Change \text{ in } x} = \frac{Rise}{Run}$ The gradient can be positive (sloping upwards) or negative (sloping downwards)	Gradient = $4/2 = 2$ Gradient = $-3/1 = -3$ -3
6. Finding the Equation of a Line <u>given a</u>	Substitute in the gradient (m) and point (x,y) in to the equation $y = mx + c$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7).
point and a gradient		y = mx + c $7 = 4 \times 2 + c$ c = -1
		y = 4x - 1
7. Finding the Equation of a Line given two	Use the two points to calculate the gradient . Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through (6,11) and (2,3)
<u>points</u>		$m = \frac{11 - 3}{6 - 2} = 2$
		y = mx + c $11 = 2 \times 6 + c$ c = -1
		y = 2x - 1
8. Parallel Lines	If two lines are parallel , they will have the same gradient . The value of m will be the	Are the lines $y = 3x - 1$ and $2y - 6x + 10 = 0$ parallel?
	same for both lines.	Answer: Rearrange the second equation in to the form $y = mx + c$
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3), the lines are parallel.

Topic: Coordinates and Linear Graphs

Tonio/Skill	Definition/Ting	Evomplo
торіс/экш	Deminuon/Tips	Example
9.	If two lines are perpendicular , the	Find the equation of the line
Perpendicular	product of their gradients will always	perpendicular to $y = 3x + 2$ which
Lines	equal -1.	passes through (6,5)
	The gradient of one line will be the	
	negative reciprocal of the gradient of the	Answer:
	other line.	As they are perpendicular, the gradient
		of the new line will be $-\frac{1}{2}$ as this is the
	You may need to rearrange equations of	negative reciprocal of 3.
	lines to compare gradients (they need to be	
	In the form $y = mx + c$	y = mx + c
		$5 - \frac{1}{5} \times 6 + c$
		$3 = -\frac{1}{3} \times 0 + c$
		<i>c</i> = 7
		$v = -\frac{1}{x} + 7$
		3 3 1
		Or a contraction of the second
		3x + x - 7 = 0

Topic: Circumference and Area

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	•
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} S-VAR & p & DISTR & n & r \neq r \angle \theta \end{array} \begin{array}{c} Pol \\ \hline 2 \\ \hline 3 \\ \hline \\ \hline \\ Ran \# \\ \hline \\ \hline \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$

	Тс	opic: Circumference and Area
Topic/Skill	Definition/Tips	Example
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360 ° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$
8. Surface Area of a Cylinder	Curved Surface Area = πdh or $2\pi rh$ Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	$5 = 2\pi(2)^{2} + \pi(4)(5) = 28\pi$
9. Surface Area of a Cone	Curved Surface Area = πrl where $l = slant$ height Total SA = $\pi rl + \pi r^2$ You may need to use Pythagoras' Theorem to find the slant height	$5m/3m/3m$ $Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface Area of a Sphere	$SA = 4\pi r^2$ Look out for hemispheres – halve the SA of a sphere and add on a circle (πr^2)	Find the surface area of a sphere with radius 3cm. $SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Shape Transformations

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	Q 3 3 4 4 4 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point . Use tracing paper.	Rotate Shape A 90° anti-clockwise about (0,1) \bigvee_{X^*}
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$

	7	Fopic: Shape Transformations
Topic/Skill	Definition/Tips	Example
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3'
		Scale Factor = ½ means 'half the size = divide by 2'
6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over . Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)

