Topic/Skill	Definition/Tips	Example
1. Linear Sequence	A number pattern with a common difference.	$2,5,8,11 \ldots$ is a linear sequence
2. Term	Each value in a sequence is called a term.	In the sequence $2,5,8,11 \ldots, 8$ is the third term of the sequence.
3. Term-toterm rule	A rule which allows you to find the next term in a sequence if you know the previous term.	First term is 2. Term-to-term rule is 'add 3' Sequence is: $2,5,8,11 \ldots$
4. nth term	A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. \mathbf{n} refers to the position of a term in a sequence.	nth term is $3 n-1$ The $100^{\text {th }}$ term is $3 \times 100-1=299$
5. Finding the nth term of a linear sequence	1. Find the difference. 2. Multiply that by n. 3. Substitute $n=1$ to find out what number you need to add or subtract to get the first number in the sequence.	Find the nth term of: 3, 7, 11, 15 \ldots 1. Difference is +4 2. Start with $4 n$ 3. $4 \times 1=4$, so we need to subtract 1 to get 3 . nth term $=4 n-1$
6. Fibonacci type sequences	A sequence where the next number is found by adding up the previous two terms	The Fibonacci sequence is: $1,1,2,3,5,8,13,21,34 \ldots$ An example of a Fibonacci-type sequence is: $4,7,11,18,29 \ldots$
7. Geometric Sequence	A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio, \mathbf{r}.	An example of a geometric sequence is: $2,10,50,250 \ldots$ The common ratio is 5 Another example of a geometric sequence is: $81,-27,9,-3,1 \ldots$ The common ratio is $-\frac{1}{3}$
8. Quadratic Sequence	A sequence of numbers where the second difference is constant. A quadratic sequence will have a n^{2} term.	
9. nth term of a geometric sequence	$a r^{n-1}$ where a is the first term and r is the common ratio	The nth term of $2,10,50,250 \ldots$. Is $2 \times 5^{n-1}$

Topic: Sequences

Topic/Skill	Definition/Tips	Example
10. nth term of a quadratic sequence	1. Find the first and second differences. 2. Halve the second difference and multiply this by n^{2}. 3. Substitute $n=1,2,3,4 \ldots$ into your expression so far. 4. Subtract this set of numbers from the corresponding terms in the sequence from the question. 5. Find the nth term of this set of numbers. 6. Combine the nth terms to find the overall nth term of the quadratic sequence. Substitute values in to check your nth term works for the sequence.	Find the nth term of: 4, 7, 14, 25, 40 .. Answer: Second difference $=+4 \rightarrow$ nth term $=$ $2 n^{2}$ Sequence: $4,7,14,25,40$ Difference: $2,-1,-4,-7,-10$ Nth term of this set of numbers is $-3 n+5$ Overall nth term: $2 n^{2}-3 n+5$
11. Triangular numbers	The sequence which comes from a pattern of dots that form a triangle. $1,3,6,10,15,21 \ldots$	$\begin{array}{ccccc} 1 & 3 & 6 & 10 \\ 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 \\ & & & 0 & 0 \end{array}$

2

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a shape. Units include: $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ etc.	
2. Area	The amount of space inside a shape. Units include: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$	

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
7. Area of a Trapezium	$\frac{(\boldsymbol{a}+\boldsymbol{b})}{2} \times \boldsymbol{h}$	

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part. Written using the ' $:$ ' symbol.	$3: 1$
2. Proportion	Proportion compares the size of one part to the size of the whole. Usually written as a fraction.	In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying Ratios	Divide all parts of the ratio by a common factor.	$\begin{aligned} & 5: 10=1: 2(\text { divide both by } 5) \\ & 14: 21=2: 3 \text { (divide both by } 7 \text {) } \end{aligned}$
4. Ratios in the form 1 : n or $n: 1$	Divide both parts of the ratio by one of the numbers to make one part equal 1.	$\begin{aligned} & 5: 7=1: \frac{7}{5} \text { in the form } 1: n \\ & 5: 7=\frac{5}{7}: 1 \text { in the form } n: 1 \end{aligned}$
5. Sharing in a Ratio	1. Add the total parts of the ratio. 2. Divide the amount to be shared by this value to find the value of one part. 3. Multiply this value by each part of the ratio. Use only if you know the total.	Share $£ 60$ in the ratio $3: 2: 1$. $\begin{aligned} & 3+2+1=6 \\ & 60 \div 6=10 \\ & 3 \times 10=30,2 \times 10=20,1 \times 10=10 \\ & £ 30: £ 20: £ 10 \end{aligned}$
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation. Identify one multiplicative link and use this to find missing quantities.	
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.	3 cakes require 450 g of sugar to make. Find how much sugar is needed to make 5 cakes. $\begin{array}{\|l} 3 \text { cakes }=450 \mathrm{~g} \\ \text { So } 1 \text { cake }=150 \mathrm{~g}(\div \text { by } 3) \\ \text { So } 5 \text { cakes }=750 \mathrm{~g}(\mathrm{x} \text { by } 5) \\ \hline \end{array}$
8. Ratio already shared	Find what one part of the ratio is worth using the unitary method.	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had $£ 16$, found out the total amount of money shared. $\begin{aligned} & £ 16=2 \text { parts } \\ & \text { So } £ 8=1 \text { part } \\ & 3+2+5=10 \text { parts, so } 8 \times 10=£ 80 \end{aligned}$

Topic/Skill	Definition/Tips	Example
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for $£ 1.28 \rightarrow 16 \mathrm{p}$ each $(\div$ by 8$)$
	13 cakes for $£ 2.05 \rightarrow 15.8 \mathrm{p}$ each $(\div$ by the quantity. The lowest number is the best value.	$13)$ Pack of 13 cakes is best value.

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $\boldsymbol{y} \propto \boldsymbol{x}$ An equation of the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$ An equation of the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ represents inverse proportion.	
3. Using proportionality formulae	Direct: $\mathbf{y}=\mathbf{k x}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse: $\mathbf{y}=\frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$ 1. Solve to find k using the pair of values in the question. 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from the question in to the equation to find the missing value.	p is directly proportional to q . When $\mathrm{p}=12, \mathrm{q}=4$. Find p when $\mathrm{q}=20$. $\begin{aligned} & \text { 1. } \mathrm{p}=\mathrm{kq} \\ & 12=\mathrm{kx} 4 \\ & \text { so } \mathrm{k}=3 \end{aligned}$ 2. $p=3 q$ 3. $\mathrm{p}=3 \times 20=60$, so $\mathrm{p}=60$

Topic/Skill	Definition/Tips	Example
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{n}}$ Direct proportion graphs will always start at the origin.	
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ Inverse proportion graphs will never start at the origin.	

Topic/Skill	Definition/Tips	Example
1. Metric System	A system of measures based on: - the metre for length - the kilogram for mass - the second for time Length: mm, cm, m, km Mass: mg, g, kg Volume: ml, cl, l	```1 kilometres = 1000 metres 1 \text { metre = 100 centimetres} 1 centimetre = 10 millimetres 1 kilogram = 1000 grams```
2. Imperial System	A system of weights and measures originally developed in England, usually based on human quantities Length: inch, foot, yard, miles Mass: lb, ounce, stone Volume: pint, gallon	$\begin{aligned} & 1 \mathrm{lb}=16 \text { ounces } \\ & 1 \text { foot }=12 \text { inches } \\ & 1 \text { gallon }=8 \text { pints } \end{aligned}$
3. Metric and Imperial Units	Use the unitary method to convert between metric and imperial units.	5 miles ≈ 8 kilometres 1 gallon ≈ 4.5 litres 2.2 pounds ≈ 1 kilogram 1 inch $=2.5$ centimetres
4. Speed, Distance, Time	Speed = Distance \div Time Distance $=$ Speed x Time Time $=$ Distance \div Speed Remember the correct units.	Speed $=4 \mathrm{mph}$ Time $=2$ hours Find the Distance. $D=S \times T=4 \times 2=8 \text { miles }$
5. Density, Mass, Volume	Density = Mass ㄷ Volume Mass = Density x Volume Volume $=$ Mass \div Density Remember the correct units.	$\begin{aligned} & \text { Density }=8 \mathrm{~kg} / \mathrm{m}^{3} \\ & \text { Mass }=2000 \mathrm{~g} \end{aligned}$ Find the Volume. $V=M \div D=2 \div 8=0.25 \mathrm{~m}^{3}$

Topic/Skill	Definition/Tips	Example
6. Pressure, Force, Area	Pressure $=$ Force \div Area Force $=$ Pressure \mathbf{x} Area Area $=$ Force \div Pressure	Pressure $=10$ Pascals Area $=6 \mathrm{~cm}^{2}$ Find the Force
7. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance \div Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	

Topic/Skill	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. $B A C$	
3. Angles at a Point	Angles around a point add up to $360{ }^{\circ}$.	
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x / y}{y / x}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	
7. Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.	

Topic/Skill	Definition/Tips	Example
8. Co-Interior Angles	Co-Interior angles add up to 180°. They look like C angles, but never say this in the exam.	
9. Angles in a Triangle	Angles in a triangle add up to 180°.	
10. Types of Triangles	Right Angle Triangles have a $\mathbf{9 0}^{\circ}$ angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have $\mathbf{3}$ equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal.	Equilateral
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to $360{ }^{\circ}$.	
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal.	\square

Topic/Skill	Definition/Tips	Example
14. Names of Polygons	```3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided \(=\) Heptagon/Septagon 8-sided \(=\) Octagon 9-sided = Nonagon 10-sided \(=\) Decagon```	
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon $=$ $(10-2) \times 180=1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula: 180 - Size of Exterior Angle	Size of Interior Angle in a Regular Pentagon $=$ $\frac{(5-2) \times 180}{5}=108^{\circ}$
17. Size of Exterior Angle in a Regular Polygon	$\frac{360}{n}$ You can also use the formula: 180 - Size of Interior Angle	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8}=45^{\circ}$

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle: $a^{2}+b^{2}=c^{2}$ Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side).	$8=$FUBTRACT: $a^{2}=c^{2}-b^{2}$ $y^{2}=100-64$ $y^{2}=36$ $y=6$
2. 3D Pythagoras' Theorem	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20 cm long fit in a pencil tin with dimensions $12 \mathrm{~cm}, 13 \mathrm{~cm}$ and 9 cm ? The pencil tin is in the shape of a cuboid. Hypotenuse of the base $=$ $\sqrt{12^{2}+13^{2}}=17.7$ Diagonal of cuboid $=\sqrt{17.7^{2}+9^{2}}=$ 19.8 cm No, the pencil cannot fit.

Topic/Skill	Definition/Tips	Example
1. Square Number	The number you get when you multiply a number by itself.	$1,4,9,16,25,36,49,64,81,100,121$, 144, 169, 196, 225... $9^{2}=9 \times 9=81$
2. Square Root	The number you multiply by itself to get another number. The reverse process of squaring a number.	$\sqrt{36}=6$ because $6 \times 6=36$
3. Solutions to $x^{2}=\ldots$	Equations involving squares have two solutions, one positive and one negative.	Solve $x^{2}=25$ $x=5 \text { or } x=-5$ This can also be written as $x= \pm 5$
4. Cube Number	The number you get when you multiply a number by itself and itself again.	$\begin{aligned} & 1,8,27,64,125 \ldots \\ & 2^{3}=2 \times 2 \times 2=8 \end{aligned}$
5. Cube Root	The number you multiply by itself and itself again to get another number. The reverse process of cubing a number.	$\begin{array}{r} \sqrt[3]{125}=5 \\ \text { because } 5 \times 5 \times 5=125 \end{array}$
6. Powers of...	The powers of a number are that number raised to various powers.	The powers of 3 are: $\begin{array}{\|l} 3^{1}=3 \\ 3^{2}=9 \\ 3^{3}=27 \\ 3^{4}=81 \text { etc. } \end{array}$
7. Multiplication Index Law	When multiplying with the same base (number or letter), add the powers. $a^{m} \times a^{n}=a^{m+n}$	$\begin{gathered} 7^{5} \times 7^{3}=7^{8} \\ a^{12} \times a=a^{13} \\ 4 x^{5} \times 2 x^{8}=8 x^{13} \end{gathered}$
8. Division Index Law	When dividing with the same base (number or letter), subtract the powers. $a^{m} \div a^{n}=a^{m-n}$	$\begin{gathered} 15^{7} \div 15^{4}=15^{3} \\ x^{9} \div x^{2}=x^{7} \\ 20 a^{11} \div 5 a^{3}=4 a^{8} \end{gathered}$
9. Brackets Index Laws	When raising a power to another power, multiply the powers together. $\left(a^{m}\right)^{n}=a^{m n}$	$\begin{gathered} \left(y^{2}\right)^{5}=y^{10} \\ \left(6^{3}\right)^{4}=6^{12} \\ \left(5 x^{6}\right)^{3}=125 x^{18} \end{gathered}$
10. Notable Powers	$\begin{aligned} & p=p^{1} \\ & p^{0}=1 \end{aligned}$	$99999^{0}=1$

Topic/Skill	Definition/Tips	Example
11. Negative Powers	A negative power performs the reciprocal. $\boldsymbol{a}^{-\boldsymbol{m}}=\frac{\mathbf{1}}{\boldsymbol{a}^{\boldsymbol{m}}}$	$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
12. Fractional Powers	The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as a normal power.	$27^{\frac{2}{3}}=\left(\frac{25}{16}\right)^{\frac{3}{2}}=\left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{2}=3^{2}=9$
$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\frac{125}{64}$		

Topic/Skill	Definition/Tips	Example
Parallel lines never meet.		
2. Perpendicular	Perpendicular lines are at right angles. There is a 90° angle between them.	
3. Vertex	A corner or a point where two lines meet.	
4. Angle Bisector	Angle Bisector: Cuts the angle in half. 1. Place the sharp end of a pair of compasses on the vertex. 2. Draw an arc, marking a point on each line. 3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. 4. Use a ruler to draw a line through the vertex and centre point.	Perpendicular Bisector: Cuts a line in half and at right angles. 1. Put the sharp point of a pair of compasses on A. 2. Open the compass over half way on the line. 3. Draw an arc above and below the line. 4. Without changing the compass, repeat from point B. 5. Draw a straight line through the two intersecting arcs.
5. Perpendicular Bisector		

Topic/Skill	Definition/Tips	Example
6. Perpendicular from an External Point	The perpendicular distance from a point to a line is the shortest distance to that line. 1. Put the sharp point of a pair of compasses on the point. 2. Draw an arc that crosses the line twice. 3. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. 4. Repeat from the other point on the line.	
5. Draw a straight line through the two		
intersecting arcs.		

Topic/Skill	Definition/Tips	Example
10. Constructing Triangles (Angle, Side, Angle)	1. Draw the base of the triangle using a ruler. 2. Measure one of the angles required using a protractor and mark this angle. 3. Draw a straight line through this point from the same point on the base of the triangle. 4. Repeat this for the other angle on the other end of the base of the triangle.	
11. Constructing an Equilateral Triangle (also makes a 60° angle)	1. Draw the base of the triangle using a ruler. 2. Open the pair of compasses to the exact length of the side of the triangle. 3. Place the sharp point on one end of the line and draw an arc. 4. Repeat this from the other end of the line. 5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.	
12. Loci and Regions	A locus is a path of points that follow a rule. For the locus of points closer to \mathbf{B} than \mathbf{A}, create a perpendicular bisector between A and B and shade the side closer to B. For the locus of points equidistant from \mathbf{A}, use a compass to draw a circle, centre A. For the locus of points equidistant to line X and line Y, create an angle bisector. For the locus of points a set distance from a line, create two semi-circles at either end joined by two parallel lines.	Points Closer to B than A.

Topic/Skill	Definition/Tips	Example
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same.	

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the \mathbf{x} coordinate (movement across). The second term is the \mathbf{y}-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2 , add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two y values.	Find the midpoint between $(2,1)$ and $(6,9)$ $\frac{2+6}{2}=4 \text { and } \frac{1+9}{2}=5$ So, the midpoint is $(4,5)$
3. Linear Graph	Straight line graph. The general equation of a linear graph is $y=m x+c$ where \boldsymbol{m} is the gradient and c is the \mathbf{y} intercept. The equation of a linear graph can contain an \mathbf{x}-term, a y-term and a number.	
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates. Method 2: Gradient-Intercept Method (use when the equation is in the form $y=$ $m x+c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form $a x+b y=c$)	\mathbf{x} -3 -2 -1 0 1 2 3 $\mathbf{y}=\mathbf{x}+\mathbf{3}$ 0 1 2 3 4 5 6

Topic/Skill	Definition/Tips	Example
	1. Cover the x term and solve the resulting equation. Plot this on the x-axis. 2. Cover the y term and solve the resulting equation. Plot this on the y-axis. 3. Draw a line through the two points plotted.	$2 x+4 y=8$
5. Gradient	The gradient of a line is how steep it is. Gradient = $\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { Rise }}{\text { Run }}$ The gradient can be positive (sloping upwards) or negative (sloping downwards)	
6. Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (\mathbf{x}, \mathbf{y}) in to the equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $\begin{gathered} y=m x+c \\ 7=4 \times 2+c \\ c=-1 \\ y=4 x-1 \end{gathered}$
7. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through $(6,11)$ and $(2,3)$ $\begin{gathered} m=\frac{11-3}{6-2}=2 \\ y=m x+c \\ 11=2 \times 6+c \\ c=-1 \\ y=2 x-1 \end{gathered}$
8. Parallel Lines	If two lines are parallel, they will have the same gradient. The value of m will be the same for both lines.	Are the lines $y=3 x-1$ and $2 y-$ $6 x+10=0$ parallel? Answer: Rearrange the second equation in to the form $y=m x+c$ $2 y-6 x+10=0 \rightarrow y=3 x-5$ Since the two gradients are equal (3), the lines are parallel.

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Topic/Skill } & \text { Definition/Tips } & \text { Example } \\
\hline \begin{array}{l}\text { 9. } \\
\text { Perpendicular } \\
\text { Lines }\end{array} & \begin{array}{l}\text { If two lines are perpendicular, the } \\
\text { product of their gradients will always } \\
\text { equal -1. } \\
\text { The gradient of one line will be the } \\
\text { negative reciprocal of the gradient of the } \\
\text { other line. } \\
\text { You may need to rearrange equations of } \\
\text { lines to compare gradients (they need to be } \\
\text { in the form } y=m x+c)\end{array} & \begin{array}{l}\text { Find the equation of the line } \\
\text { perpendicular to } y=3 x+2 \text { which } \\
\text { passes through }(6,5)\end{array} \\
\begin{array}{ll}\text { Answer: } \\
\text { As they are perpendicular, the gradient } \\
\text { of the new line will be }-\frac{1}{3} \text { as this is the } \\
\text { negative reciprocal of } 3 .\end{array}
$$

y=m x+c\end{array}\right\}\)\begin{tabular}{l}

$5=-\frac{1}{3} \times 6+c$
$c=7$

$y=-\frac{1}{3} x+7$

$3 x+x-7=0$
\end{tabular}

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	Radius - the distance from the centre of a circle to the edge Diameter - the total distance across the width of a circle through the centre. Circumference - the total distance around the outside of a circle Chord - a straight line whose end points lie on a circle Tangent - a straight line which touches a circle at exactly one point Arc - a part of the circumference of a circle Sector - the region of a circle enclosed by two radii and their intercepted arc Segment - the region bounded by a chord and the arc created by the chord	Parts of a Circle Radius Diameter Circumference Segment Sector
3. Area of a Circle	$\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{2}$ which means 'pi x radius squared'.	If the radius was 5 cm , then: $A=\pi \times 5^{2}=78.5 \mathrm{~cm}^{2}$
4. Circumference of a Circle	$\boldsymbol{C}=\boldsymbol{\pi} \boldsymbol{d}$ which means 'pix diameter'	If the radius was 5 cm , then: $C=\pi \times 10=31.4 \mathrm{~cm}$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference.	$\text { Arc Length }=\frac{115}{360} \times \pi \times 8=8.03 \mathrm{~cm}$

Topic/Skill	Definition/Tips	Example
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area.	$\text { Area }=\frac{115}{360} \times \pi \times 4^{2}=16.1 \mathrm{~cm}^{2}$
8. Surface Area of a Cylinder	Curved Surface Area $=\pi d h$ or $\mathbf{2 \pi r h}$ Total SA $=\mathbf{2} \pi r^{2}+\pi d h$ or $\mathbf{2 \pi} r^{2}+\mathbf{2} \pi r h$	$\text { Total } S A=2 \pi(2)^{2}+\pi(4)(5)=28 \pi$
9. Surface Area of a Cone	```Curved Surface Area \(=\boldsymbol{\pi r l}\) where \(l=\) slant height Total SA \(=\pi r l+\pi r^{2}\)``` You may need to use Pythagoras' Theorem to find the slant height	
10. Surface Area of a Sphere	$S A=4 \pi r^{2}$ Look out for hemispheres - halve the SA of a sphere and add on a circle $\left(\pi r^{2}\right)$	Find the surface area of a sphere with radius 3 cm . $S A=4 \pi(3)^{2}=36 \pi \mathrm{~cm}^{2}$

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Column Vector	In a column vector, the top number moves left $(-)$ or right $(+)$ and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means ' 1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point. Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $\boldsymbol{x}=$? is a vertical line. Line $\boldsymbol{y}=$? is a horizontal line. Line $\boldsymbol{y}=\boldsymbol{x}$ is a diagonal line.	Reflect shape C in the line $y=x$

Topic/Skill	Definition/Tips	Example
5. Enlargement	The shape will get bigger or smaller. Multiply each side by the scale factor.	$\begin{aligned} & \begin{array}{l} \text { Scale Factor }=3 \text { means ' } 3 \text { times larger } \\ =\text { multiply by } 3 \text { ' } \\ \text { Scale Factor }=1 / 2 \text { means 'half the size }= \\ \text { divide by 2' } \end{array} \end{aligned}$
6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	
7. Describing Transformatio ns	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	- Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. $S F=-2$ will be rotated, and also twice as big.	Enlarge ABC by scale factor -2 , centre $(1,1)$

